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pier functions of fewer variables. Kolmogorov's theorem concerning the representation-
of functions of several variables in terms of functions of one variable turns out to be
almost irrelevant in the context of networks for learning. We develop a theoretical
framework for approximation based on regularization techniques that leads to a class
of three-layer networks that we call Generalized Radial Basis Functions (GRBF), since
they are mathematically related to the well-known Radial Basis Functions, mainly used
for strict interpolation tasks. GRBF networks are not only equivalent to generalized
splines, but are also closely related to pattern recognition methods such as Parzen
windows and potential functions and to several neural network algorithms, such as
Kanerva's associative memory, backpropagation and Kohonen's topology preserving
map. They also have an interesting interpretation in terms of prototypes that are
synthesized and optimally combined during the learning stage. The paper introduces
several extensions and applications of the technique and discusses intriguing analogies
with neurobiological data.
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1 Learning as Approximation

The problem of learning a mapping between an input and an output space
is essentially equivalent to the problem of synthesizing an associative mem-
ory that retrieves the appropriate output when presented with the input and
generalizes when presented with new inputs. It is also equivalent to the prob-
lem of estimating the system that transforms inputs into outputs given a set
of examples of input-output pairs. A classical framework for this problem
is approximation theory. Related fields are system identification techniques
when it is possible to choose the input set and system estimation techniques
when the input-output pairs are given. A suggestive point of view on net-
works and classical representation and approximation methods is provided
by Omohundro (1987) and an interesting review of networks, statistical in-
ference, and estimation techniques can be found in Barron and Barron, 1988.
Learning from the point of view of approximation has been also considered
among others by J. Schwartz (1988), Poggio et al. (1988, 1989), Aloimonos
(1989), Hurlbert and Poggio (1988) and Poggio (1975).

Approximation theory deals with the problem of approximating or in-
terpolating a continuous, multivariate function f(X) by an approximating
function F(W, X) having a fixed number of parameters W (X and W are
real vectors X = x,x 2,...,x,, and W = wl,w2,...,w.). For a choice of a
specific F, the problem is then to find the set of parameters W that provides
the best possible approximation of f on the set of "examples". This is the
learning step. Needless to say, it is very important to choose an approximat-
ing function F that can represent f as well as possible. There would be little
point in trying to learn, if the chosen approximation function F(W, X) could
only give a very poor representation of f(X), even with optimal parameter
values. Therefore, it is useful to separate three main problems:

1) the problem of which approximation to use, i.e. which classes of func-
tions f(X) can be effectively approximated by which approximating func-
tions F(W,X). This is a representation problem. Our motivation is similar
to Minsky's and Papert's in studying the properties and limitations of Per-
ceptrons to deal with specific classes of problems. The issue of complexity
of the approximation arises naturally at this point. The complexity of the
approximation - measured, for instance, by number of terms, is directly re-
lated to the scaling problem of the neural network literature (Rumelhart et
al., 1986), to the concept of order, a central point in Perceptrons and to
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the curse of dimensionality, well-known in statistical estimation.
2) the problem of which algorithm to use for finding the optimal values

of the parameters W for a given choice of F.
3) the problem of an efficient implementation of the algorithm in parallel,

possibly analog hardware.
This paper deals with the first two of these problems and is especially focused
on the first.

1.1 Networks and Approximation Schemes

Almost all approximation schemes can be mapped into some kind of network
that can be dubbed as a "neural network" 1. Networks, after all, can be
regarded as a graphic notation for a large class of algorithms. In the context
of our discussion, a network is a function represented by the composition of
many basic functions. To see how the approximation problem maps into a
network formulation, let us introduce some definitions.

To measure the quality of the approximation, one introduces a distance
function p to determine the distance p[f(X), F(W, X)] of an approximation
F(W,X) from f(X). The distance is usually induced by a norm, for instance
the standard L 2 norm. The approximation problem can be then stated for-
mally as:

Approximation problem If f(X) is a continuous function defined on
set X, and F(W,X) is an approximating function that depends continuously
on W E P and X, the approximation problem is to determine the parameters
W* such that

p[F(W,X),f(X)] < p[F(W,X),f(X)]

for all W in the set P.

With these definitions we can consider a few examples of F(W, X), shown
in the figure 1:

* the classical linear case is
1Many instances of Neural Networks should be called Non-Neural-Networks, s;,nce their

relation to biological neurons is weak at best
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F(W,X) = W. X

where W is an m x n matrix and X is an n-dimensional vector. It
corresponds to a network without hidden units;

* the classical approximation scheme is linear in a suitable basis of func-
tions 4bi(X) of the original inputs X, that is

F(W,X) = W. (X)

and corresponds to a network with one layer of hidden units. Spline
interpolation and many approximation schemes, such as expansions in
series of orthogonal polynomials, are included in this representation.
When the ti are products and powers of the input components Xi, F
is a polynomial.

" the nested sigmoids scheme (usually called backpropagation, BP in
short) can be written as

F(W, X) = a(Z- w,,ou(Z vio(...( j uX.)..)))
n i i

and corresponds to a multilayer network of units that sum their inputs
with "weights" w, v, u,... and then perform a sigmoidal transformation
of this sum. This scheme (of nested nonlinear functions) is unusual in
the classical theory of the approximation of continuous functions. Its
motivation is that

F(W,X) = 0(1W, (1ujX))
n i

with a being a linear threshold function, can represent all Boolean
functions (any mapping S from I = {0, 1}N into {0, 1} can be written
as a disjunction of conjunctions, which in terms of threshold elements
becomes the above expression, where biases or dummy inputs are al-
lowed). Networks of this type, with one layer of hidden units, can
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approximate uniformly any continuous d-variate functions (see, for in-
stance, Cybenko, 1989 or Funahashi, 1989; Cybenko, 1988 and Moore
and Poggio, 1988, among others, proved the same result for the case of
two layers of hidden units).

In general, each approximation scheme has some specific algorithm for
finding the optimal set of parameters W. An approach that wor~s in gen-
eral, though it may not be the most efficient in any specific case, is some
relaxation method, such as gradient descent or conjugate gradient or simu-
lated annealing, in parameter space, attempting to minimize the error p over
the set of examples. In any case, our discussion suggests that networks of
the type used recently for simple learning tasks can be considered as spe-
cific methods of function approximation. This observation suggests that we
approach the problem of learning from the point of view of classical approx-
imation theory.

In this paper, we will be mainly concerned with the first of the problems
listed earlier, that is the problem of developing a well-founded and sufficiently
general approximation scheme, which maps into multilayer networks. We will
only touch upon the second problem of characterizing efficient "learning"
algorithms for estimating parameters from the data.

The plan of the paper is as follows. We first consider the question of
whether exact, instead of approximated, representations are possible for a
large class of functions, since a theorem of Kolmogorov has been sometime
interpreted as supporting this claim. We conclude that exact representations
with the required properties do not exist. Good and general approximating
representations, however, may exist. Thus section 3 discusses the formulation
of the problem of learning from examples as the problem of approximation
of mappings and, in particular, as hypersurface reconstruction. From this
point of view, regularization techniques used for surface reconstruction can
be applied also to the problem of learning. The problem of the connection be-
tween regularization techniques and feedforward, multilayer networks is left
open. Sections 4 and 5 provide an answer to this question by showing that
regularization leads to an approximation scheme, called Generalized Radial
Basis Functions (GRBFs), which is general, powerful and maps into a class
of networks with one layer of hidden units. We show that GRBFs are math-
ematically strictly related to the well-known interpolation method of Radial
Basis Functions. Section 4 reviews some of the existing results about RBF,
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Figure 1: (a) A linear approximating function maps into a network without a
hidden layer with linear units. The "weights" of the connections correspond
to the matrix W - the linear estimator. (b) Polynomial estimators and
other linear combinations of nonlinear "features" of the input correspond
to networks with one hidden layer. In the case of polynomials the hidden
units correspond to products (II) and powers of the components of the input
vector. The first layer of connections is fixed; the second is modified during
"training". (c) A back-propagation network with one layer of hidden sigmnoid
units. Both sets of connections - from the input layer to the hidden units
(wj) and from there to the output layer (W2) - are modified during training.
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while Section 5 derives the main result of this paper, that is the derivation
of GRBFs from regularization. In section 6 we discuss how the framework of
GRBFs encompasses several existing "neural network" schemes. The possible
relevance of the work to neurophysiology is then briefly outlined, together
with a number of interesting properties of gaussian radial basis functions.
Section 8 discusses several extensions and applications of the method. We
conclude with some comments on the crucial problem of dimensionality faced
by this and any other learning or approximation technique2 .

2 Kolmogorov's Theorem: An Exact Repre-
sentation is Hopeless

Before discussing more extensively the approximation problem, it is obviously
important to answer the question of whether an exact representation exists
for continuous functions in terms of simpler functions. For instance, if all
multivariate functions could be represented exactly and nicely as the sum or
product of univari.te ones, we could use networks consisting of units with
just one input and one output. Recently, it I as been claimed that a theorem
of this type, due to Kolmogorov (1957), could be used to justify the use of
multilayer networks (Hecht-Nielsen, 1987; Barron and Barron, 1988; see also
Poggio, 1982). The original statement (Lorentz, 1976) is the following:

Theorem 2.1 (Kolmogorov, 1957) There exist fixed increasing continu-
ous functions hpq(x), on I = [0, 1] so that each continuous function f on P
can be written in the form

2n+1 nf(Xl,..., X, 2n+ gq(E hq(x p)),

q=1 p=1

where gq are properly chosen continuous functions of one variable.

This result asserts that every multivariate continuous function can be rep-
resented by the superposition of a small number of univariate continuous
functions. In terms of networks this means that every continuous function

'A preliminary version of the ideas developed here have appeared in (Poggio and the
staff, 1989).
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of many variables can be computed by a network with two hidden layers
whose hidden units compute continuous functions (the functions gq and hpq).
Can this be considered as a proof that a network with two hidden layers is a
good and powerful representation? The answer is no. There are at least two
reasons for this.

First, in a network implementation that has to be used for learning and
generalization, some degree of smoothness is required for the functions cor-
responding to the units in the network. Smoothness of the hq and of g is
important because the representation must be smooth in order to generalize
and be stable against noise. A number of results of Vituskin (1954, 1977) and
Henkin (1967) show, however, that the inner functions hpq of Kolmogorov's
theorem are highly nonsmooth (they can be regarded as "hashing" functions,
see Appendix A and Abelson, 1978). In fact Vitushkin (1954) had proved
that there are functions of more than one variable which are not representable
as the superposition of differentiable functions of one variable. Little seems
to be known about the smoothness of g. Kahane (1975) shows that g can be
represented as an absolutely convergent Fourier series. It seems that g could
be either smooth or non-smooth, even for differentiable functions f.

The second reason is that useful representations for approximation and
learning are parametrized: they correspond to networks with fixed units and
modifiable parameters. Kolmogorov's network is not of this type: the form
of g depends on the specific function f to be represented (the hq are inde-
pendent). g is at least as complex, in terms of bits needed to represent it, as
f.

A stable and usable exact representation of a function in terms of net-
works with two or more layers seems hopeless. The result obtained by Kol-
mogorov can then be considered as a "pathology" of the continuous functions.
Vitushkin's results however, leave completely open the possibility that mul-
tilayer approximations exist. In fact it has been recently proved (see, for
instance, Funahashi, 1989; Moore and Poggio, 1988) that a network with
two layers of hidden sigmoidal units can approximate arbitrarily well any
continuous function. It is interesting to notice that this statement still holds
true if there is just one hidden layer (Carrol and Dickinson, 1989; Cybenko,
1989; Funahashi, 1989). The expansion in terms of sigmoid functions can
then be regarded as one of the possible choices for the representation of a
function, although little is known about its properties. The problem of find-
ing good and well founded approximate representations will be considered in
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the rest of the paper.

3 Learning as Hypersurface Reconstruction

If we consider learning from the perspective of approximation, we can draw
an equivalence between learning smooth mappings and a standard approx-
imation problem, surface reconstruction from sparse data points. In this
analogy, learning simply means collecting the examples, i.e., the input co-
ordinates xi, yi and the corresponding output values at those locations, the
height of the surface di. This builds a look-up table. Generalization means
estimating d in locations x, y where there are no examples, i.e. no data. This
requires interpolating or, more generally, approximating the surface between
the data points. Interpolation is the limit of approximation when there is
no noise in the data. This example, given for a surface, i.e., the graph in
R' x R, corresponding to the mapping from R2 to R, can be immediately
extended to mappings from Rn to R- (and graphs in R' x JRn). In this sense
learning is a problem of hypersurface reconstruction. Notice that the other
tasks of classification and of learning boolean functions may be regarded in a
similar way. They correspond to the problems of approximating a mapping
R  - {0, 1} and a mapping {0, 1}' --+ {0, 1}, respectively.

3.1 Approximation, Regularization, and Generalized
Splines

From the point of view of learning as approximation, the problem of learning
a smooth mapping from examples is ill-posed (Courant and Hilbert, 1962;
Hadamard, 1964; Tikhonov and Arsenin, 1977) in the sense that the infor-
mation in the data is not sufficient to reconstruct uniquely the mapping in
regions where data are not available. In addition, the data are usually noisy.
A priori assumptions about the mapping are needed to make the problem
well-posed. generalization is not possible if the mapping is completely ran-
dom. For instance, examples of the mapping represented by a telephone
directory (peopl," %ames into telephone numbers) do not help in estimating
the telephone •_:1. .-er corresponding to a new name. Generalization is based
on the fact th .. .e world in which we live is usually - at the appropriate
level of descriptio:. - redundant. In particular, it may be smooth: small
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changes in some input parameters determine a correspondingly small change
in the output (it may be necessary in some cases to accept piecewise smooth-
ness). This is one of the most general and weakest constraints that makes
approximation possible. Other, stronger a priori constraints may be known
before approximating a mapping, for instance that the mapping is linear,
or has a positive range, or a limited domain or is invariant to some group
of transformations. Smoothness of a function corresponds to the function
being not fully local: the value at one point depends on other values nearby.
The results of Stone (1982, see section 9.2) suggest that if nothing else is
known about the function to be approximated with dimensions, say, higher
than about 10, the only option is to assume a high degree of smoothness. If
the function to be approximated is not sufficiently smooth, the number of
examples required would be totally unpractical.

3.2 Regularization Techniques for Learning

Techniques that exploit smoothness constraints in approximation problems
are well known under the term of standard regularization. Consider the
inverse problem of finding the hypersurface values z, given sparse data d.
Standard regularization replaces the problem with the variational problem
of finding the surface that minimizes a cost functional consisting of two terms
(Tikhonov, 1963; Tikhonov and Arsenin, 1977; Morozov, 1984; Bertero, 1986;
the first to introduce this technique in computer vision was Eric Grimson,
1981). The first term measures the distance between the data and the desired
solution z; the second term measures the cost associated with a functional of
the solution IIPzII2 that embeds the a priori information on z. P is usually
a differential operator. In detail, the problem is to find the hypersurface z
that minimizes

- d,) 2 + AIIPzII 2  (1)
i

where i is a collective index representing the points in feature space where
data are available and A, the regularization parameter, controls the compro-
mise between the degree of smoothness of the solution and its closeness to
the data. Therefore A is directly related to the degree of generalization that
is enforced. It is well known that standard regularization provides solutions
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that are equivalent to generalized splines (Bertero et al., 1988). A large body
of results in fitting and approximating with splines may be exploited.

3.3 Learning, Bayes Theorem and Minimum Length
Principle

The formulation of the learning problem in terms of regularization is satis-
fying from a theoretical point of view. A variational principle such as equa-
tion (1) can be solidly grounded on Bayesian estimation (see Appendix D).
Using Bayes theorem one expresses the conditional probability distribution
P-/d(z; d) of the hypersurface z given the examples d in terms of a prior prob-
ability P.(z) that embeds the constraint of smoothness and the conditional
probability Pd/l(d; z) of d given z, equivalent to a model of the noise:

P./d(z;d) oc P (z) Pd/,(d;z)

This can be rewritten in terms of complexities of hypothesis, defined as
C(.) = -log P(.)

C(zld) = C(z) + C(dlz) + c (2)

where c, which is related to Pd(d), depends only on d. The MAP estimate
corresponds to considering the z with minimum complexity C(zld). Maxi-
mum likelihood is the special case of MAP for uniform C(z) (perfect a priori
ignorance).

The maximum of this posterior probability (the MAP estimate) coincides
with standard regularization, that is equation (1), provided that the noise
is additive and gaussian and the prior is a gaussian distribution of a linear
functional of z (see Appendix D). Under these conditions, the first term
- Ei Ilzi - dill' - in the regularization principle equation I corresponds to
C(djz), whereas the second term - lPzl12 -- corresponds to the prior C(z).

Outside the domain of standard regularization, the prior probability dis-
tribution may represent other a priori knowledge than just smoothness.
Piecewise constancy, for instance, could be used for classification tasks. Pos-
itivity, convexity, local behaviors of various types may be captured by an
appropriate prior. Markov Random Field models, which can be considered

12



as an extension of regularization, allow more flexibility in the underlying gen-
eralization conditions, for instance in terms of piecewise smoothness, by using
line processes (see Geman and Geman, 1985 and Marroquin et al., 1987).

Notice that in practice additional a priori information must be supplied
in order to make the learning problem manageable. Space invariance or other
invariances to appropriate groups of transformations can play a very impor-
tant role in effectively countering the dimensionality problem (see Poggio,
1982).

As pointed out by Rivest (in preparation), one can reverse the relationship
between prior probabilities and complexity (see equation (2)). Instead of de-
termining the complexity C(z) in equation 2 from the prior, one may measure
the complexity of the a priori hypotheses to determine the prior probabili-
ties. Rissanen (1978), for instance, proposes to measure the complexity of a
hypothesis in terms of the bit length needed to encode it. In this sense, the
MAP estimate is equivalent to the Minimum Description Length Principle:
the hypothesis z which for given d can be described in the most compact
way is chosen as the "best" hypothesis. Similar ideas have been explored by
others (for instance Solomonoff, 1978). They connect data compression and
coding with Bayesian inference, regularization, hypersurface reconstruction
and learning.

3.4 From Hypersurface Reconstruction to Networks

In the section above we have sketched the strict relations between learning,
Bayes estimation, MRFs, regularization and splines; splines are equivalent
to standard regularization, itself a special case of MRF models, which are
a subset of Bayesian estimators. All these methods can be implemented in
terms of parallel networks: in particular, we have argued that MRFs can
be implemented in terms of hybrid networks of coupled analog and digital
elements (Marroquin et al., 1987). Standard regularization can be imple-
mented by resistive grids, and has been implemented on an analog VLSI
chip (Harris, 1989). It is then natural to ask if splines, and more generally
standard regularization, can be implemented by feedforward multilayer net-
works. The answer is positive, and will be given in the next few sections in
terms of what we call Generalized Radial Basis Functions (GRBF). GRBFs
are closely related to an interpolation technique called Radial Basis Func-
tions (RBF), which has recent theoretical foundations (see Powell, 1987 for a
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review) and has been used with very promising results (Hardy, 1971; Franke,
1982; Rippa, 1984; Broomhead and Lowe, 1988; Renals and Rohwt,', 1989;
Casdagli, 1989).

4 Radial Basis Functions: A Review

In the following sections we will describe the RBF technique, its feedforward
network implementation and a straightforward extension that makes it usable
for approximation rather than for interpolation.

4.1 The interpolation problem and RBF

The Radial Basis Function (RBF) mevhod is one of the possible solutions to
the real multivariate interpolation problem, that can be stated as follows:

Interpolation problem given N different points {Xi E R nji = 1, ...N}
and N real numbers {yi E Rli = 1, ...N} find a function F from Rn to R
satisfying the interpolation conditions:

F(x) = y i = 1,...,N.

The RBF approach consists in choosing F from a linear space of dimension
N, depending on the data points {xi}. The basis of this space is chosen to
be the set of functions

{h(jjx - xjjj)ji-- 1,...N}I

where h is a continuous function from R+ to R, usually called the radial
basis function, and 11 II1 is the Euclidean norm on R h. Usually a polynomial
is added to this basis, so that the solution to the interpolation problem has
the following form:

N m
F(x) = E cjh(jjx - x + E dp,(x) m < n (3)

i=1 i=1

where {pji = 1,...,m} is a basis of the space 7rk.l(Rn) of algebraic polyno-
mials of degree at most k - 1 from /? to R, and k is given.
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The interpolation conditions give N linear equations for the (N + m)
coefficients Cj and di in equation (3), so that the remaining degrees of freedom
are fixed by imposing the following constraints:

N
Zcipj(xi)=0, j=1,...,m.

i=1

In order to discuss the solubility of the interpolation problem by means of
this representation we need the following definition (Gelfand and Vilenkin,
1964; Micchelli, 1986):

Definition 4.1 A continuous function f(t), defined on [0, oo), is said to be
conditionally (strictly) positive definite of order k on Rn if for any distinct
points x 1 ,..•, Xpj E Rn and scalars cl,.. ., cN such that ElVj cip(xi) = 0 for
all p E 7rk-.l(Rnh), the quadratic form N 1 cicif(1xi - x311) is (positive)
nonnegative.

Notice that for k = 0 this class of functions, that we denote by Pk(R),
reduces to the class of the (strictly) positive definite functions, that is the
class of functions such that the quadratic form Z Y cicif (11x - x311) is
(positive) nonnegative (Schoenberg, 1936).

Well known results of approximation theory assert that a sufficient con-
dition for the existence of a solution of the form (3) to the interpolation
problem is that h E 'PA(Rn). It is then an important problem to give a full
characterization of this class. In particular we are interested in characterizing
the set of functions that are conditionally positive definite of order k over
any R", that we define as simply Pk.

4.1.1 RBF and Positive Definite Functions

The class PO has been extensively studied (see Stewart, 1976, for a review),
and we mention here one relevant result obtained by Schoenberg in 1938.
Before stating his result we first give the following

Definition 4.2 A function f is said to be completely monotonic on (0, oc)
provided that it is C(O, o) and (-1)1S _4(x) > 0 x E (0, 0o), 1 = 0,1,2,...
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We define M 0 as the space of all the functions that are completely monotonic
on (0, oo). In 1938 Schoenberg was able to show the deep connection between
MO and Po. In fact he proved the following theorem:

Theorem 4.1 (Schoenberg, 1938) A function f(r) is completely mono-
tonic on (0, oo) if and only if f(r 2 ) is positive definite.

This theorem asserts that the classes Mo and P0 are the same class, but
Schoenberg went further, proving that in his theorem positive definitess can
be replaced by strictly positive definitess, except for trivial cases. We can
then conclude that it is possible to solve the interpolation problem with an
expansion of the type

N
F(x) = Zcih(jlx - xi 11) (4)

if the function h(vt) is completely monotonic. The unknown coefficients
ci. can be recovered imposing the interpolation conditions F(xj) = yj (j=
1, ...N), that substituted in equation (4) yields the linear system

Nyj -- c h(jjxj - x l) J-1..N
i=1

Defining the vectors y, c and the symmetric matrix H as follows

(y)i = yi, (c)i = ci, (H) = h(llxj - xill)

the coefficients of the expansion (4) are given by

c = H-'y. (5)

The theorem of Schoenberg ensures that the solution of system (5) always
exists, since the matrix H can be inverted, being strictly positive definite.
As an example of application of the theorem of Schoenberg we mention the
functions e" and (1 + r) - c with a > 0: since they are evidently completely
monotonic the functions e- r2 (Gaussians) and (1 + r2)- 0 are strictly positive
definite, and can be used as radial basis functions to interpolate any set of
n-dimensional data points.

From equation (5) it turns out that a necessary and sufficient condi-
tion to solve the interpolation problem is the invertibility of the matrix H.
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Schoenberg's theorem, however, gives only a sufficient condition, so that
many other functions could be used as radial basis functions without being
strictly positive definite. Other sufficient conditions have been recently given
by Micchelli, that in 1986 proved the following theorem:

Theorem 4.2 (Micchelli, 1986) Let h be a continuous function on [0, oo)
and positive on (0, oo). Suppose its first derivative is completely monotonic
but not constant on (0, oc). Then for any distinct vectors x1, ..., XN E Rn

(-1)N-det h(Ilxi - xjl12) > 0.

The essence of this theorem is that if the first derivative of a function is
completely monotonic this function can be used as radial basis function,
since the matrix H associated to it can be inverted. A new class of functions
is then allowed to be used as radial basis functions. For instance the function
(c2 + r)', with 0 < a < 1 and c possibly zero, is not completely monotonic,
but satisfies the conditions of theorem (4.2), so that the choice (c2 + r2 ) is
possible for the function h in (4).

A list of functions that can be used in practice for data interpolation
is given below, and their use is justified by the results of Schoenberg or
Micchelli:

h(r) = e (gaussian)

h(1) 1 a > 0(C2 +r 2)or

h(r) = (c2 + r2 ), 0 < 8 < 1

h(r) = v _+c2  (multiquadric)

h(r) = r (linear)

Notice that the linear case corresponds, in one dimension, to piecewise linear
interpolation, that is the simplest case of spline interpolation (further and
stronger connections to spline interpolation will be discussed later). Notice
that even the case 8 = has been explicitly mentioned, since it corresponds2
to interpolation by means of "multiquadric" surfaces. Multiquadrics have
been introduced by Hardy (1971) and extensively used in surface interpo-
lation with very good results (Franke, 1982; Rippa, 1984). Some of the
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functions listed above have been used in practice. Gaussian RBF have been
used by Agterberg (1974) and Schagen (1979), and an approximating RBF
expansion has been studied by Klopfenstein and Sverdlove (1983). The lat-
ter considered the case of equally spaced data and succeeded in giving some
error estimates. RBF have even been used by Broomhead and Lowe (1988)
and Casdagli (1989) for predicting the behavior of dynamical systems and by
Renals and Rohwer (1989) for phoneme classification. A crude form of RBF
performed better on the Nettalk task (Sejnowski and Rosenfeld, 1987) than
Nettalk itself (Wolpert, 1988).

Almost all of these functions share the unpleasant property of depending
on a parameter, that will generally depend on the distribution of the data
points. However it has been noticed (Franke, 1982) that the results obtained
with Hardy's multiquadrics (in 2 dimensions) seem not to depend strongly
on this parameter, and that the surfaces obtained are usually very smooth.
It is interesting to notice that, in spite of the excellent results, no theoretical
basis existed for Hardy's multiquadrics before Micchelli's theorem. On the
contrary, in the case of several functions, including the gaussian, a mathe-
matical justification can be given in the context of regularization theory, as
we shall see in section (6).

4.1.2 RBF and Conditionally Positive Definite Functions

The theorem of Schoenberg on the equivalence of Mo and P0 has been re-
cently extended, to obtain an interesting characterization of Pk. In fact in
1986 Micchelli proved:

Theorem 4.3 (Micchelli, 1986) h(r 2) E Pk whenever h(r) is continuous

on [0, oo) and (_1)k A " is completely monotonic on (0, oo)

To our extents the practical implication of this theorem is the following: if
the function h(r 2) is not positive definite we do not know if it can be used as
radial basis function, since the matrix H could be singular, but if the k-th
derivative of h(r) is completely monotonic a polynomial of degree at most
k - 1 can be added to the expansion (4), (see equation (3)), so that it can be
used to solve the interpolation problem. Notice that, according to a remark
of Micchelli (1986), the converse of theorem (4.3) holds true: denoting by
Mk the functions whose k-th derivative belongs to M, f(r 2 ) E Pk if and
only if f(r) E Mk, so that Pk =M Mk.
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It has been noticed (Micchelli, 1986; Powell, 1988) that this theorem em-
beds the results obtained by Duchon (1976, 1977) and Meinguet (1979, 1979a)

3
in their variational approach to splines. For instance the functions h(r) = rI
and g(r) = ir log VF/ are not completely monotonic, but this property holds
for their second derivatives (that is they belongs to M 2 ). By theorem 4.3 the
functions h(r 2) = r 3 and g(r 2) = r 2 log r ("thin plate splines") belong to P 2):
It is then possible to interpolate any set of data points using h(r 2) and g(r 2 )
as radial basis functions and a linear term (polynomial of degree at most 2
-1) added to the expansion (4). This corresponds exactly to the expressions
derived by Duchon and Meinguet, but without some of their limitations (see
Example 2 in section 5.1.2). Since this method has been shown to embody
natural spline interpolation in one dimension (Powell, 1988), can then be
considered as an extension of natural splines to multivariable interpolation.

4.2 RBF and Approximation Theory

It is natural to ask if the expansion (3) is a good approximation method.
The interpolation property of the RBF expansion, ensured by Micchelli's
theorems, is neither sufficient nor necessary to guarantee good results. In
particular, a very important question that is always addressed in approxima-
tion theory is whether the solution can be prevented from badly oscillating
between the interpolation points when they become dense. This does not
happen when spline functions are used, due to the smoothness constraint,
but it could happen when other radial basis functions are chosen.

. Several results have been obtained about this question in recent years.
Perhaps the most important of them has been obtained by Jackson (1988).
He addressed a more fundamental and general question: given a multivariate
function f(x) and a set of N data points {xjji = 1, ..., N}, do there exist a
sequence of functions FN(x), with

N k

FN(X) = Zc~hUlx- xill) + Eapj(x)
i=1 j=1

and some bounded open domain on which

IFN() - f(x)l--+ 0 as N - oo ?
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Jackson gave sufficient conditions on h for this result to hold. In particular
he considered the function h(r) = r and showed that these conditions are
satisfied in R2" + ' but not in R2 . These results are encouraging and make
this approach a highly promising way of dealing with irregular sets of data
in multi-dimensional spaces.

Finally we mention the problem of noisy data. Since in this case a strict
interpolation is meaningless, the RBF method must be modified. The prob-
lem consists in solving the linear system Hc = y in a way that is robust
against noise. A very simple solution to this problem has been provided in
the context of regularization theory (Tikhonov and Arsenin, 1977). It con-
sists in replacing the matrix H by H + AI, where I is the identity matrix, and
A is a "small" parameter, whose magnitude is proportional to the amount
of noise in the data points. The coefficients of the RBF expansion are then
given by

c = (H + AI)-ly'. (6)

This equation gives an approximating RBF expansion, and the original in-
terpolating expansion is recovered by letting A go to zero. Since data are
usually noisy, from now on we will refer to the RBF expansion as the one
computed by means of equation (6).

4.3 Network Implementation

A remarkable property of this technique is that it can be implemented by
a simple network with just one layer of hidden units, as shown in figure 2
(see Broomhead and Lowe, 1988). For simplicity we restrict ourselves to
expansions of the type (4), disregarding the polynomial term, the results
being valid even in the more general case in which it is included.
The first layer of the network consists of "input" units whose number is
equivalent to the number of independent variables of the problem. The sec-
ond layer is composed by nonlinear "hidden" units fully connected to the first
layer. There is one unit for each data point xi = (xi, yi, zi,...) parametrized
by its "center", which has the coordinates (xi, yi, zi,.-.) of the data point
itself. The output layer, fully connected to the hidden layer, consists of one
(or more) linear unit(s), whose "weights" are the unknown coefficients of the
RBF expansion. These output units may also represent a fixed, nonlinear,
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Figure 2: a) The Radial Basis Function network for the interpolation of
a bivariate function F. The radial hidden units h evaluate the functions
h(Ilx - t.11). A fixed invertible nonlinear function may be present after the
final summation. b) A radial hidden unit h. The input is given by x = (x, y)
and its parameters are the coordinates of the n-th "center" tn,. The output
is the value of the radial basis function h, centered on tn, at point x. The
centers tn coincide in this RBF case with the data points x,n
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invertible function, as already observed by Broomhead and Lowe (1988) and
discussed in a later section. This is useful for instance in the case of classi-
fication tasks. All the learning algorithms discussed later extend trivially to
this case.

Notice that the architecture of the network is completely determined by
the learning problem, and that, unlike most of the current "neural" networks,
there are no unknown weights connecting the input and the hidden layer.
Since spline interpolation can be implemented by such a network, and splines
are known to have a large power of approximation, this shows that a high
degree of approximation can be obtained by just one hidden layer network.

Of course this method has its drawbacks. The main one is that the
method is global, that is each data point contributes to the value of the in-
terpolating function at every other point. The computation of the coefficients
of the RBF expansion can become then a very time consuming operation:
its complexity grows polynomially with N, (roughly as N 3 ) since an N x N
matrix has to be inverted. In a typical application to surface reconstruction
from sparse stereo data the number of data points can easily be more than
3000: to invert a sparse 3000 x 3000 matrix not only is a formidable task, but
may not be meaningful, since we know that the probability of ill-conditioning
is higher for larger and larger matrices (it grows like N 3 for a N x N uniformly
distributed random matrix) (Demmel, 1987). Another problem with the Ra-
dial Basis Function method, and with interpolating methods in general, is
that data are usually noisy and therefore not suitable for interpolation; an
approximation of the data would be preferable. In Section 5 a solution to
these problems will be given in the context of regularization theory. The
next section presents a method that has been proposed by Broomhead and
Lowe (1988) to reduce computational complexity and gives as result an ap-
proximation instead of an interpolation. A new result is given, supporting
its validity.

4.4 Approximated Radial Basis Function

In this section we show how the Radial Basis Functions can also be used for
approximation rather than for interpolation. In the RBF approach the basis
on which the interpolating function is expanded is given by a set of radial
functions h translated and centered on the data points. The interpolating
function is then a point in a multidimensional space, whose dimension is
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equal to the number of data points, which could be very large. As usual
when dealing with spaces of a such high dimensionality we could ask if all
the dimensions are really significant.

This suggests that the RBF expansion could be approximated by an ex-
pansion in a basis with a smaller number of dimensions (Broomhead and
Lowe, 1988). This can be accomplished by an expansion of the following
form:

K

F(x) = coh(ix - t.11) (7)

where the t0 are K points, that we call "centers" or "knots", whose coor-
dinates have to be chosen and K < N. It is clear from equation (7) that
the interpolation conditions can no longer be satisfied. Imposing F(xi) = yj
leads to the following linear system:

K

yj E= ch(xj - t11) j = 1,...,N.

This system is overconstrained, being composed of N equations for K un-
knowns, and the problem must be then regularized. A least-squares approach
can be adopted (see also Broomhead and Lowe, 1988) and the optimal solu-
tion can be written as

c - H+y (8)

where (H)io = h(jjxj -t,I) and H+ is the Moore-Penrose pseudoinverse of H
(Penrose, 1955; Ben-Israel and Greville, 1974). The matrix H is rectangular
(N x K) and its pseudoinverse can be computed as

H + = (HTH)-IHT

provided (HTH)-1 exists. The matrix HTH is square and its dimensionality
is K, so that it can be inverted in time proportional to K3 . A rough estimate
suggests that this technique could speed the computations by a factor (E)3.
Of course, other methods for computing the pseudoinverse exist, including
recursive ones (see Albert, 1972).

As in the previous case this formulation makes sense if the matrix HTH
is nonsingular. Micchelli's theorem is still relevant to this problem, since we
prove the following corollary:
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Corollary 4.4.1 Let G be a function satisfying the conditions of Micchelli's
theorem and xl,...,XN an N-tuple of vectors in Rn. If H is the (N-s) x N
matrix H obtained from the matrix Gi = G(I]xi - x11) deleting s arbitrary
rows, then the (N - s) x (N - s) matrix HTH is not singular.

To prove this corollary it is sufficient to notice that, since Micchelli's theorem
holds, the rank of Gij is N. A theorem of linear algebra states that deleting
s rows from a matrix of rank N yields a matrix of rank N - s. Remembering
that rank(AAT ) = rank(A) for every rectangular matrix A we have that
rank(HHT) = rank(H) = N - s; then HHT is not singular.

This result asserts that if the set of knots is chosen to be a subset of the
set of data, and if the conditions of Micchelli's theorem are satisfied, the
pseudoinverse can be computed as H+ = (HTH)-H. Other choices for
the set of knots seera possible in practice: for example Broomhead and Lowe
(1988) use uniformly spaced knots to predict successfully chaotic time series,
in conjunction with a gaussian Radial Basis Function.

We remark that while this technique is useful for dealing with large sets of
data, it has been proposed as a way of dealing with noise. In the next section,
we will show, however, that if the only problem is noise, an approximating
technique of radial basis functions with as many centers as data points can
be derived in a rigorous way with the aid of regularization theory. An ex-
tension of the RBF method will be presented in the general framework of
regularization theory.

5 Regularization Approach and General-
ized Radial Basis Functions

In this section we derive from regularization theory an alternative approxi-
mation method based on a basis of radial functions. We apply regularization
theory to the approximation/interpolation problem and we show that for a
large class of stabilizers the regularized solution is an expansion of the radial
basis function type. The approach leads to a representation, that we call
Generalized Radial Basis Functions (GRBFs), which is very similar to RBFs
while overcoming the problem of the computational complexity of RBFs for
large data sets. The GRBF technique can then be considered the point of
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contact between multilayer feedforward networks and the mathematical ap-
paratus of standard regularization theory.

5.1 Regularization Theory

Let S = {(xi, yi) E R ' x Ri = 1,...N} be a set of data that we want to ap-
proximate by means of a function f. The regularization approach (Tikhonov,
1963; Tikhonov and Arsenin, 1977; Morozov, 1984; Bertero, 1986) consists
in looking for the function f that minimizes the functional

N

H[f] = -(y - f(x,))2 + AIIPf 112
i=1

where P is a constraint operator (usually a differential operator), 1_ 112 is a
norm on the function space to whom f belongs (usually the L2 norm) and A is
a positive real number, the so called regularization parameter. The structure
of the operator P embodies the a priori knowledge about the solution, and
therefore depends on the nature of the particular problem that has to be
solved. Minimization of the functional H leads to the associated Euler-
Lagrange equations. For a functional H[f] that can be written as

H[f] = !,n dzdy .'.£(f' f, f' f ... ,I fXX, fXY, fYI.. "fY... Y)

the Euler-Lagrange equations are the following (Courant and Hilbert, 1962)

a a 82 82

+.f. ++a... o

The functional H of the regularization approach is such that they can always
be written as

1 N
PP f(x) = ( - f(x))6(x - xi) (9)

i=1

where P is the adjoint of the differential operator P and the right side comes
from the functional derivative with respect to f of the data term of H.
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Equation (9) is a partial differential equation, and it is well known that
its solution can be written as the integral trasformation of its right side with
a kernel given by the Green's function of the differential operator PP, that
is the function G satisfying the following distributional differential equation:

PP G(x;)= 6(x - (

Because of the delta functions appearing in equation (9) the integral trans-
formation becomes a discrete sum and f can then be written as

1 N

f(x) = E -(y, - f(x,))G(x; xi) . (10)
i=1

It is important to notice that a polynomial term should in general be added
to the right-hand side of equation (10), depending on the specific stabilizer.
Equation (10) says that the solution of the regularization problem lives in an
N-dimensional subspace of the space of smooth functions. A basis for this
subspace is given by the N functions G(x; xi), that is by the Green's function
G "centered" on the data points xi.

A set of equations for the unknown coefficients ci= is easily ob-A

tained by evaluating equation (10) at the N data points xi. A straightforward
calculation yields the following linear system:

(G + AI)c = y (11)

where I is the identity matrix, and we have defined

(y), = y, , (c)i = cj , (G)ij = G(x,; xj) .

We then conclude that the solution to the regularization problem is given by
the following formula

N

f(x) = ZciG(x; xi) (12)
j=1

where the coefficients satisfy the linear system (11) and a polynomial term
is in general added.

Notice that since lIP! 112 is quadratic the corresponding operator in equa-
tion (9) is self-adjoint and can be written as PP. Then the Green's func-
tion is symmetric: G(x; ) = G( ;x). If lIP! 12 is translationally invariant
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G will depend on the difference of its arguments (G = G(x - )) and if
DJPfJ2 is rotationally and translationally invariant G will be a radial func-
tion: G = G(JJx - II2).

Let us now compare equations (12) and (11) with equations (4) and (6).
It is clear that if the Green's function is a radial function then the regularized
solution is given by an expansion in radial functions. The requirement of ro-
tational and translational invariance on 11pf 112 is very common in practical
applications. Clearly regularization with a non-radial stabilizer P justifies
the use of appropriate non-radial basis functions, retaining all the approxi-
mation properties associated with the Tikhonov technique. Examples of P
and corresponding G will be given in section 5.1.2.

The requirement of rotational and translational invariancc on IlPf 12 is
very common in practical applicaiions. Clearly regularization with a non-
radial stabilizer P justifies the use of appropriate non-radial basis functions.
The resulting basis retains all approximation properties associated with the
Tikhonov technique.

5.1.1 Micchelli's condition and regularization define almost iden-
tical classes of radial basis functions

At this point it is natural to ask about the relation between the class of
functions defined by stabilizers P of the Tikhonov type in regularization
theory (the class T) and the class Pk (for all k) of conditionally positive
definite functions of order k (which is identical with Mk). The two classes
have to be very closely related, since they originate from the same problem -
optimal approximation. The regularization approach gives - if the stabilizer
is radially symmetric - radial functions G that satisfy

PP G(Ix- [[) = 6(x - ) . (13)

Notice that if P contains a term proportional to the function itself, then
PP contains a constant term; by taking the Fourier transform of equation
(13) and applying Bochner's theorem (1932, 1959) on the representation of
positive definite functions (Stewart, 1976), it turns out that G is positive def-
inite, that is G E Po. (See section 5.1.2 for details). In general equation (13)
implies (Gelfand and Vilenkin, 1964) that G is conditionally positive definite
(of an order determined by P). This discussion suggests that Pk = Mk D T
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(for all k): in fact a function G may satisfy the conditions of Micchelli's theo-
rem 4.3 (G E Mk), and therefore be conditionally positive definite of order k
(G E 'k), without satisfying equation (13) for any operator P (G 0 T). We
conjecture that these functions G, G E Pk, G 0 T are interpolating func-
tions but not good approximating functions, since they do not come from
a regularization approach. We have little reasons for this conjecture, apart
from Jackson's result (1988): in an even number of dimensions the function
h(r) = r does n,)t satisfy hi. (sufficient!) conditions for good approximation
and is not the Green's function of any known Tikhonov stabilizer, though it
can be used as radial basis function, according Micchelli's theorem (4.2), since
h(V'i) E M 1 . Notice that in R2" + ', h(r) = r satisfies Jackson's conditions,
is the Green's function of the thin-plate stabilizer and satisfies Micchelli's
conditions. Hardy's multiquadrics H(r) = (c2 + r2) are a possible coun-
terexample to our conjecture, since they are conditionally positive definite of
order one (H E P 1 ), numerical work suggests that they have good approx-
imation properties and we have been so far unable to obtain an expansion
in terms of multiquadric from any regularization principle. We are happy to
leave the answer to these questions to real mathematicians.

5.1.2 Examples

Example I

We now consider a wide class of stabilizers and show that they lead to a
solution of the regularization problem that has the form of a radial basis
function expansion of the type of equation (4), with a positive definite basis
function and without the polynomial term.

Let us consider the class of constraint operators defined by

IIPxfIf = dx E a.(pf(X)) 2  (14)
m0O

where p2m = V 2m, p2m+I = vv 2m, V2 is the Laplacian operator and the
coefficients am are real positive numbers. The stabilizer is then translation-
ally invariant and the Green's function satisfies the distributional differential
equation:
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00

(-1)mamV G(x -) = (x - . (15)
m=O

By Fourier transforming both sides of equation (15) we obtain:

00

EaP(w.w)m G(w)=1 (16)
m=.O

and by Fourier anti-transforming G(&,) we bave for the Green's function G(x)-
F eiw.X

G(x) ]dw 0dwewxdV(W) (17)
fR, E=o am (W - W)~ =R

where V(w) is a bounded non-decreasing function if a0 9 0. Now we can
apply Bochner's theorem (1932), which states that a function is positive
definite if and only if it can be written in the form (17), to conclude that
G(x) is positive definite. Notice that the condition ao 9 0 is crucial in this
particular derivation, and, as it has been pointed out by Yuille and Grzywacz
(1988), it is a necessary and sufficient condition for the Green's function to
fall asymptotically to zero. Let us now see some examples.

One example is provided by the following choice of the coefficients:

ao=l, a1 =1, a=O Vn>2.

In this case the Green's function (here in one dimension) becomes the Fourier
transform of LY, and then

G(x) cx elcl.

Clearly this function is not very smooth, reflecting the fact that the stabilizer
consists of derivatives of order 0 and 1 only. Smoother functions can be
obtained allowing a larger (possibly infinite) number of coefficients to be
different from zero. For instance, setting

1
ak - -

(2k!)
and remembering that 2m = cosh(w) we obtain G(x) - which

= (2k!) coeh(x)
is a very smooth, bell-shaped function.

Another interesting choice (Yuille and Grzywacz, 1988) is:
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a 0 r!2m

which gives as Green's function a multidimensional Gaussian of variance a.
The regularized solution is then a linear superposition of Gaussians centered
on the data points xi. Its physical interpretation is simple: regarding a as
"time" the solution satisfies the heat equation:

9f(x,) 

with boundary conditions f(xi, a) = yi. The regularized solution for A = 0
can then be regarded as the pattern of temperature of a conducting bar which
is in contact, at the points xi, with infinite heat sources at temperature yi.
The value of a is then related to the diffusion time.

Example 2

A widely used class of stabilizers is given by the functionals considered by
Duchon (1976, 1977) and Meinguet (1979, 1979a) in their variational ap-
proach to multivariate interpolation, that is one of the possible generaliza-
tions of spline theory from one to many dimensions. In particular they con-
sidered rotationally invariant functionals of the form

n

where ,,. *,, - am and 1 < m. The solution to this variational problem"" xi I ... a 'im

is of the form

N k

F(x) = ch'(Ilx - xill) + d p (x) (18)
i=1 t=l

which is exactly the same as equation (3). Here m is a measure of the degree
of smoothness of the solution, and is related to the maximum polynomial
precision that can be obtained by the relation: k < m. Since the stabilizers
are rotationally invariant, the corresponding Green's functions h' are radial,
and for each fixed value of m they turn out to be h'(r) = r2 m - n In r if n < 2m
for n even, and h-(r) = r 2 m- n otherwise.
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As an example we show the case n = m = 2. The functional to be
minimized is

( 2 ( 2 + ( 2f 21
H2 [f] dxdy

and the Green's function h is the well known "thin plate spline" h(r) = r 2 Inr.
In this case a linear term appears as the second term of the right hand side
of equation (18). Thir plate splines have been introduced by engineers for
aeroelastic calculations (Harder and Desmareis, 1972), their name coming
from the fact that 12 is the bending energy of a thin plate of infinite extent.
The results obtained with thin plate splines are comparable with those ob-
tained with Hardy's multiquadrics. Another radial basis function that has
been extensively used is r3 , with a linear term in the expansion as well, wich
is equivalent to cubic splines in the one dimensional case.

5.2 Extending to Movable Centers: GRBF

In the previous section we have shown that the function minimizing the func-
tional H is specified by N coefficients, where N is the number of data points.
Therefore, when N becomes large, the regularization approach suffers from
the same drawbacks of the RBF method that have been pointed out in a pre-
vious section. To reduce the computational complexity of the representation,
we then write an approximate solution f* of the regularization problem as an
expansion involving a fewer number of centers, as done by Broomhead and
Lowe (1988), that do not necessarily coincide with some of the data points
xi, that is:

nI

f'(x) = Zc,,G(x; t.) (19)
a,=1

where the coefficients c, and the centers to, are unknown. We now have to
face the problem of finding the n coefficients c, and the d. n coordinates of
the centers t, so that the expansion (19) is optimal. In this case we dispose
of a natural definition of optimality, given by the functional H. We then
impose the condition that the set {c., t,Ia = 1, ..., n} must be such that it
minimizes H[f*], and the following equations must be satisfied:
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8H~f = atH (20
=0, 0  a=,...,n. (20)

We call an expansion of the type of equation (19) with the coefficients satis-
fying equation (20) a Generalized Radial Basis Function (GRBF) expansion.

The explicit form of equation (20) depends on the specific constraint
operator that has been used. We perform here the computations for the
constraint operator IIPf-!2 considered in the Example 1 of the previous
section, with boundary conditions such the function f and all its derivatives
vanish on the border of the integration domain. The main difficulty is to find
the explicit expression of IIPjf 1' as a function of c, and t,. To accomplish
this task we notice that, by using Green's formulas (Courant and Hilbert,
1962), which are the multidimensional analogue of integration by parts, and
using our boundary conditions, the m-th term of P1 can be written as

fR dx(Pmf(x)) 2 = (-1)m Jfdxf(x)P2 "f(x). (21)

Substituting equation (21) in P1 , and using definition of the differential op-
erator PP, we obtain

IP f112 = fR dxf(x)PPI f(x). (22)

When f* is substituted in equation (22) each term containing G(x) gives a
delta function and the integral disappears, yielding:

llPxfil2 - = cocpG(t.;to)
Or,0=1

Defining a rectangular N x n matrix G as (G)io, = G(xi; t,) and a symmetric
n x n square matrix as (g),, = G(t0 ; ta), H[f*] can finally be written in the
following simple form:

H[fI] = c(GT G + Ag)c - 2cGTy + y . y. (23)

Notice that equation (23) is a quadratic form in the coefficients c,, so that
minimization with respect to them is easily done. For each fixed set of centers
t, the optimal vector c is then given by

c = (GT G + Ag)-GTy . (24)
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Notice that if we let A go to zero and G is radial (and centers are fixed) the
approximate method of Broomhead and Lowe is recovered. Their method,
however, lacks the capability of looking for the optimal set of knots of the
expansion, as required by regularization theory. The possibility of moving
the knots, by a procedure of the gradient descent type, could noticeably
improve the quality of approximation. It has been mentioned by Broomhead
and Lowe (1988), and has been used by Moody and Darken (1989) (their
method is a heuristic version of RBF with moving centers, see section 6.4).
Notice that from the point of view of approximation theory this is a nonlinear
problem that reminds us of the splines with free knots, that are splines whose
knots are allowed to vary with the function being approximated (De Vore and
Popov, 1987; Braess, 1986).

Clearly this approximated solution does not satisfy equation (10) any-
more. However an explicit computation shows that equation (10) is satisfied
at the centers, that is

N

f/(t) Z Y - f (Xi) G(t;xi) . (25)
i1 A

The converse is also true: if one fixes the set of knots and requires that
equation (25) hold for each c, equation (24) is easily recovered.

5.3 GRBF and Gradient Descent

In the previous section we introduced the GRBF method to approximate the
regularized solution. It requires the minimization of the multivariate function
H[f*], which is not convex in general. Gradient-descent is probably the
simplest approach for attempting to find the solution to this problem, though,
of course, it is not guaranteed to converge. Several other iterative methods,
such as versions of conjugate gradient and simulated annealing (Kirkpatrick
et al., 1983) may be better than gradient descent and should be used in
practice: in the following we will consider for simplicity (stochastic) gradient
descent. It is straightforward to extend our equations to other methods. In
the gradient descent method the values of c,, and t, that minimize H[ff]
are regarded as the coordinates of the stable fixed point of the following
dynamical system:
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cc,= -- a = 1, ... K8%, '

OH[f'
Otck

where w is a parameter determining the microscopic timescale of the problem
and is related to the rate of convergence to the fixed point. The gradient de-
scent updating rules are given by the discretization (in time) of the previous
equations. Clearly, since the function H[f*] is not convex, more than one
fixed point could exist, corresponding to local, suboptimal minima. To over-
come this problem one could use "stochastic" gradient descent by adding a
random term to the gradient descent equations. They become then stochas-
tic equations of the Langevin type, often used to model the relaxation of a
physical system toward the equilibrium in the presence of noise (Wax, 1954;
Ma, 1976; Parisi, 1988). In this case the learning process is governed by the
following stochastic equations

c .= -W Oc f +l() a =l.K (26)af ]

t,=-w 0t* +e(i), a= 1,...K (27)

where 71c and e, are white noise of zero mean and variance

< 77.(t)r7#(t') > = <,E,(t)cp(t') > = 2T6,5o,5(t - t')

where T measures the power of the noise, analog to temperature. Solving
these equations is similar to using Montecarlo methods of the Metropolis type

(Metropolis at al., 1953) (decreasing the variance of the noise term during
the relaxation is similar to performing stochastic annealing).

We now consider for simplicity the case in which the Green's function is
radial (G(x; t) = h(j[x-tI12)) and A is set to zero. Defining the interpolation
error as

A i = Yi - Y ,

where y = f*(xi) is the response of the network to the i-th example, we can
write the gradient terms as
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aH N
-2Z ,h(jIx, to 2 ) , (28)

OH N

= 4c, , Aih'(Ilxi - tolI2)(x - to) (29)O~a i=1

where h' is the first derivatives of h. Equating 2-m to zero we notice that
at the fixed point the knot vectors t, satisfy the following set of nonlinear
equations:

t , i Pic'

where Pj* = Aih'(Ilxi - t"t12). The optimal knots are then a weighted sum
of the data points. The weight Pj' of the data point i for a given knot a is
high if the interpolation error A is high there and the radial basis function
centered on that knot changes quickly in a neighbor of the data point. This
observation could suggest faster methods for finding a quasi-optimal set of
knots. Notice that if the radial basis function h depends on a parameter
e, that is if h = h(r, f), the functional H[f*J must be minirm,cd even with
respect to this parameter. The following equation must then be added to
equations (28) and (29):

cH (2 _ t"112 , C). (30)

As we mentioned before, an invertible nonlinearity, such a sigmoid, may be
present at the output of the network. In this case

N
f(x) = a(- coh(Ijx - t.112)). (31)

holds and equations (28) and (29) are modified in the following way:

OH N
oc= -2 _'(y )Ah(lx, - tII2) , (32)

OH N

4c,, a(y)ih'(Ilxi -t 2)(x- t0 ) (33)
i=1
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In the gradient descent equations nothing forbids that two or more cen-
ters may move towards each other until they coincide. Clearly, this should
be avoided (it corresponds to a degeneracy of the solution) in an efficient
algorithm. A formal way to ensure that centers do never overlap is to add a
term to the functional that it is minimized of the form 'I'(lt - toll),
where %F is an appropriate repulsive potential, such as T(y) = . Equations

(28) and (29) can be easily modified to reflect this additional term (see Girosi
and Poggio, 1989a). In practice, it may be sufficient to have a criterion that
forbids to any two centers to move too close to each other.

In terms of networks the GRBF method has the same implementation of
RBF. The only difference is that the parameters of the hidden layer are now
allowed to vary, being the coordinates of the knots of the GRBF expansion.
From this point of view the GRBF network is similar to backpropagation in
the sense that there are two layers of weights to be modified by a gradient
descent method, and there are in principle local minima. figure 3 shows the
network that should be used in practice for finding the parameters. Notice
that a constant, a linear term (and possibly higher order polynomials) should
be added to the radial basis representation (depending on the stabilizer,
polynomials may be in the null space of the regularized solution, as for thin-
plate splines but not for gausdian radial basis functions). Equations (28) and
(29) should be modified appropriately. figure 3 makes this clear.

5.3.1 A semiheuristic algorithm

The previous discussion and some of the analogies discussed later (with the k-
means algorithm and with Moody's approach) suggest the following heuristic
algorithm for GRBFs.

1. set the number of centers and use the k-means algorithm or a compa-
rable one (or even equation 29 with , = constant) to find the initial
positions t,, of the centers. Alternatively, and more simply, set the
initial value of the centers to a subset of the examples

2. use the pseudoinverse technique to find the values of the coefficients c,
(see equation 24)

3. use the t, and c, found so far as initial values for equations (29) and
(28)
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Figure 3: The GRBF network used to approximate a mapping between
x1 , x 2, ... , x, and y, given a set of sparse, noisy data. In addition to the
linear combination of radial basis functions, the network shows other terms
that contribute to the output: constant and linear terms are shown here as
direct connections from the input to the output with weights ao, al, a 2, hn.
Constant, linear and even higher order polynomials may be needed, depend-
ing on the stabilizer P. Gaussian radial basis functions, on the other hand,
may not need additional terms.
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4. explore how performance changes by changing incrementally the num-
ber of centers.

6 Relations with other methods

We have been impressed by the generality of this formulation and by how
many existing schemes can be understood within this framework. In this
section, we will mention briefly some of the most obvious connections with
existing methods. In the next sections we will discuss possible extensions of
the method, its relation to a specific style of computation that has biological
undertones, its meaning from a Bayes point of view, and finally, some general
points about the most crucial problem of learning, the "curse of dimension-
ality".

6.1 GRBF and Classification Tasks

RBF and GRBF are an interpolation and approximation method for continu-
ous, in fact smooth, functions, as shown by the fact that they are generalized
splines. It is quite natural to ask whether the method can be modified to deal
with piecewise constant functions, i.e., with classification tasks, and in par-
ticular boolean functions. More precisely, we have so far considered GRBFs
as a technique to solve the problem of approximating real valued functions
f : R ' -. R'; we ask now whether they can be specialized to deal with
the problem of approximating functions h : R ' -- {0, 1} (the classification
problem) and t: {0, 1} -_ f0, 1} (the boolean learning problem).

Computer experiments show that without any modification, Gaussian
radial basis functions can be used to learn successfully XOR (Broomhead
and Lowe, 1988). A simple form of RBF was shown to perform well on
the classification task of NetTalk (Wolpert, 1988). We expect therefore that
classification tasks could be performed by the GRBF method described ear-
lier using a basis of smooth functions. In a similar way, backpropagation
networks with smooth sigmoid nonlinearities have been used in several clas-
sification tasks. Thus, it seems that the method can be used, as it stands, for
classification tasks and for learning boolean functions. The question remains,
however, whether a special basis of radial functions could be used advanta-
geously. Consider the task of learning boolean functions. In backpropagation
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networks, the boolean limit corresponds to the smooth sigmoid nonlineari-
ties becoming linear threshold functions. The obvious boolean limit of radial
basis functions is a basis of hyperspheres:

S.,d(x) = 1 for I x - x,1 :5 d else = 0 (34)

where S .d is the hypersphere of radius d centered in x,, x, d are boolean
vectors and 11 -1 is the Hamming distance. The use of such a basis may be
similar to closest match classification (which can also be used for continu
ous mappings by using Euclidean metric instead of Hamming distance). Of
course, this basis does not satisfy Micchelli's condition, and cannot be de-
rived from regularization. It may be tempting to conjecture that arbitrarily
close smooth approximations exist that do. The obvious case of a difference
of sigmoids, however, does not satisfy Micchelli's condition, since its first
derivative is not completely monotonic:

1 1 ___ __- __1

S() = 1- -

1--ez 1+ +e -  (1+a + a 2) + 2a cosh(x)

In the boolean limit of backpropagation, one knows that a network with
one hidden layer can represent any boolean function given a sufficient number
of hidden units (because it is well known that any boolean function can be
written as a threshold of linear combinations of threshold functions). The
representation may require in general a large number of hidden units because
it amounts to a disjunctive normal form of the boolean function. In a similar
way, a basis of hyperspheres can be used to represent any boolean function by
having a sufficient number of "centers," one for each term in the disjunctive
normal form of the function.

Seen in a more geometrical way (consider the case of a binary classification
problem on R), the boolean limit of RBFs carves the n-dimensional input
space into hyperspheres, whereas the linear threshold limit for BP carves the
space into regions bounded by hyperplanes. It seems clear that each of the
partitions can be made to approximate the other arbitrarily well, given a
sufficient number of hidden units and/or centers.
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6.2 GRBF and Backpropagation

GRBF are similar, but not identical, to backpropagation networks with one
hidden layer, since: a) they also have one hidden layer of smooth differ-
entiable functions; b) they are updated by a gradient descent method (as
b ,ckprpagatlion) thpt nperates on two "layers" of parameters, the cj aid
the t,; c) the update moves the "centers" of those blurred hyperspheres (in
the Gaussian case) and their weight in the final layer, whereas in backprop-
agation "blurred" hyperplanes are shifted during learning.

From the point of view of approximation and regularization theory GRBFs
have solid theoretical foundations, a property that is not (yet) shared by
backpropagation. However, some results on the approximating power of
backpropagation networks have been recently obtained (Carrol and Dick-
inson, 1989; Cybenko, 1989; Funahashi 1989; Arai, 1989). Their essence is
that a network with one hidden layer of sigmoid units can synthesize arbitrary
well any continuous function, but may require a very large number of hidden
units. Among other advantages relative to backpropagation networks, the
simplest version of our scheme - a radial basis function network with centers
fixed and centered at the examples - is guaranteed to perform quite well,
to have an efficient implementation (there are no local minima in the error
functional) and to be equivalent to a powerful approximation technique, that
is generalized splines. Interestingly, this network may represent the initial
step in a gradient descent procedure for synthesizing a more powerful GRBF
network (compare section 5.3.1).

6.3 GRBF and Vector Quantization

The classification limit of GRBF (with the basis of equation (34) and 1K II
the euclidean distance, say) is clearly related to vector quantization (Gersho,
1982). Vector quantization of a signal vector f involves subdivision of the
n-dimensional vector space into J decision regions Dj, each enclosing one of
the J reconstruction values. The signal vector f is quantized to the recon-
struction vector rj, if f lies in the decision region Dj. In terms of equation
34, this mean that Sj(f) = 1, and the domains in which the Si are nonzero
are disjoint.
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6.4 GRBF and Kohonen's Algorithm

Kohonen (1982) suggested an algorithm to establish a topology conserving
and dimensionality reduction map from a set of inputs in a high dimensional
space. The algorithm has been suggested in order to describe maps similar
to those that form between cortical areas. It has also been used for several
other tasks, such as learning motor movements (Ritter and Schulten, 1986,
1987). Kohonen's algorithm can be regarded as a special form of the k-
means method (MacQueen, 1967) for finding the centers of n clusters in a
set of inputs. It turns out that this is what the update equation in the t,"
does, i.e.

OE N
o c = Ah'(lxi, - t.II2)(xi - t.) (35)

with Ai = constant. The differences with respect to Kohonen's algorithm
are that a) each center is affected by all data points and not only by the ones
that "belong" to it b) h' depends on I x, - tll rather than on the distance
between the "locations" i and a. Notice that the addition of a "repulsive"
terms in the functional to avoid overlapping centers make the analogy with
Kohonen's algorithm even closer.

Intuitively, the last equation with Ai = constant adjusts the t, to the
centers of the cluster of the data. This analogy suggests a heuristic scheme
to improve convergence of the gradient descent method: first find the centers
of the clusters with an algorithm like equation (35) with Ai = constant, then
use the full scheme (equations (28) and (29)). The heuristic should help the
method to avoid local minima.

Moody and Darken (1989) propose a similar heuristic as the core of their
method; they first find the position of the "centers" (they do not use, how-
ever, strict Radial Basis Functions) with the k-means algorithm and then
find the coefficients ci of the expansion. The k-means algorithm and Ko-
honen's are also related to vector quantization (see above). Other so-called
competitive learning algorithms are similar to Kohonen's algorithm.
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6.5 GRBF, Kanerva's Model and Marr's Model of
the Cerebellum

Kanerva introduced in 1984 a memory model called Sparse Distributed Mem-
ory (SDM). Keeler (1988) has shown that the SDM can be regarded as a
three-layer network with one layer of hidden units (see figure 4). In this
description, the first layer consists of n boolean units that represent input
vectors (binary addresses) a. The hidden layer consists of m binary units s
(the select vectors) with m >> n. The weights between the input layer and
the hidden layer are given by the matrix A, with rows that correspond to
the storage locations. Each output unit (in SDM there are n output units) is
also binary with connection weights to the hidden units given by the matrix
C, which is updated during learning by a Hebbian learning rule. Thus given
an input address a, the selected locations are:

s = So,d(Aa),

where SO,d was defined in section 6.1 (we assume x0 = 0). C is set to be the
sum of the outer products of desired outputs d and selected locations, i.e.
C = djsT

Clearly the analogy with the boolean limit of RBF is complete: the ma-
trix A contains the locations of the centers (the selected locations) and C
corresponds to the c of RBF. In the SDM, the center locations are fixed. The
Hebbian one-step update rule can be regarded as a zero-order approximation
of the gradient descent scheme, which is equivalent, for fixed centers, to the
pseudoinverse (see Appendix B.2).

Keeler has discussed the similarities between the SDM model and the
Hopfield model. He has also pointed .)ut that Kanerva's SDM is very similar
in mathematical form to a model of the cerebellum introduced by Marr (1969)
and Albus (1971). In our language, the mossy fibers are the input lines,
the granule cells correspond to the centers (the granule cells are the most
populous neurons in the brain), and the Purkinje cells correspond to the
output units (the summation). Other cells, according to Marr and Albus,
are involved in what we would call control functions; the basket cells that
receive another input may inhibit the Purkinje cells, whereas the stellate cells
could change the gain of the Purkinje cells or their threshold. The Golgi
cells receive inputs from the granule cells (the centers), and feedback into
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Input layer, n units

m hidden units

Output layer, n units

Figure 4: Kanerva's SDM represented as a three-layer network. The matrix
A of connections between the first layer and the hidden layer contains the
locations of the m centers. The matrix C of modifiable connections between
the hidden layer and the output layer corresponds to the coefficients c in the
RBF formulation (redrawn from Keeler, 1988).
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the mossy fiber - granule cell connections. It may be interesting to consider
in more detail whether the circuitry of the cerebellum may have anything to
do with the more general continuous update scheme described by equations
(28) and (29).

Keeler also suggests modifying the SDM to optimize the addresses Ai
according to Aj"' = Aqld _ A(Aold - x). This is about the same as Kohonen's
algorithm and reduces (for d = 1) to the unary representation of Baum,
Moody and Wilczek (1988). Keeler provides interesting estimates of the
performance of SDM. In conclusion, Kanerva's algorithm can be regarded as
a special case of the boolean limit of GRBF, which again provides a more
general framework and a connection with continuous approximation.

6.6 Other Methods

The GRBF formulation seems to contain as special cases two well-known
schemes in the field of pattern recognition. One is Parzen windows (Parzen,
1962), which is an approximation scheme typically used to estimate prob-
ability distributions, and which is remarkably similar to a simple form of
RBF (Duda and Hart, 1973). The other scheme is the method of potential
functions for determining discriminant functions (Duda and Hart, 1973). The
method was originally suggested by the idea that if the samples were thought
of as points in a multidimensional space and if electrical charges were placed
at these points, the electrostatic potential would serve as a useful discrimi-
nant function g(x) = Ei q2K(x, xi), with K being typically a radial function
(as classical electrostatic potentials are). Potentials such as the gaussian
have also been used. GRBF (and RBF) may be used to give a more rigorous
foundation to these two rather heuristic methods.

GRBF has also similarities with the class of Memory-Based Reasoning
methods, recently used by D. Waltz and coworkers on massively parallel
machines, since in its simplest version (as many centers as examples) it is
essentially a look-up table that finds those past instances that are sufficiently
close to the new input.
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7 Gaussian GRBFs and science-fiction neu-
robiology

In this section we point out some remarkable properties of gaussian Gener-
alized Radial Basis Functions, that may have implications for neurobiology,
for VLSI hardware implementations and, from a conceptual point of view,
for extending in interesting directions the GRBF approach.

7.1 Factorizable Radial Basis Functions

The synthesis of radial basis functions in high dimensions may be easier
if they are factorizable. It can be easily proven that the only radial basis
function which is factorizable is the Gaussian. A multidimensional gaussian
function can be represented as the product of lower dimensional gaussians.
For instance a 2D gaussian radial function centered in t can be written as:

G(Ilx - t1l') = e-IIXtiI = (36)

This dimensionality factorization is especially attractive from the phys-
iological point of view, since it is difficult to imagine how neurons could
compute h(IIx - t"112) in a simple way for dimensions higher than two. The
scheme of figure 5, on the other hand, is physiologically plausible. Gaus-
sian radial functions in one and two dimensions can be readily implemented
as receptive fields by weighted connections from the sensor arrays (or some
retinotopic array of units representing with their activity the position of fea-
tures).

Physiological speculations aside, this scheme has three interesting features
from the point of view of a hardware implementation and also in purely
conceptual terms. Consider the example of a GRBF network operating on
images:

1. the multidimensional radial functions are synthesized directly by ap-
propriately weighted connections from the sensor arrays, without any
need of an explicit computation of the norm and the exponential.

2. 2D gaussians operating on the sensor array or on a retinotopic array
of features extracted by some preprocessing transduce the implicit po-
sition of features in the array into a number (the activity of the unit).
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Figure 5: A three-dimensional radial gaussian implemented by multiplying
two-dimensional gaussian and one-dimensional gaussian receptive fields. The
latter two functions are synthesized directly by appropriately weighted connec-
tions from the sensor arrays, as neural receptive fields are usually thought to
arise. Notice that they transduce the implicit position of stimuli in the sensor
array into a number (the activity of the unit). They thus serve the dual pur-
pose of providing the required "number" representation from the activity of
the sensor array and of computing a gaussian function. 2D gaussians acting
on a retinotopic map can be regarded as representing 2D "features", while the
radial basis function represents the "template" resulting from the conjunction
of those lower-dimensional features.
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They thus serve the purpose of providing the required "number" rep-
resentation from the "array" representation.

3. 2D gaussians acting on a retinotopic map can be regarded as repre-
senting 2D "features", while each radial basis function represents the
"template" resulting from the conjunction of those lower-dimensional
features. Notice that in this analogy the radial basis function is the
AND of several features and could also include the negation of certain
features, that is the AND NOT of them. The scheme is also hierar-
chical, in the sense that a multidimensional gaussian "template" unit
may be a "feature" input for another radial function (again because of
the factorization property of the gaussian). Of course a whole GRBF
network may be one of the inputs to another GRBF network.

7.2 Style of Computation and Physiological Predic-
tions

The multiplication operation required by the previous interpretation of gaus-
sian GRBFs to perform the "conjunction" of gaussian receptive fields is not
too implausible from a biophysical point of view. It could be performed
by several biophysical mechanisms (see Koch and Poggio, 1987). Here we
mention three mechanisms:

1. inhibition of the silent type and related circuitry (see Torre and Poggio,
1978; Poggio and Torre, 1978)

2. the AND-like mechanism of NMDA receptors

3. a logarithmic transformation, followed by summation, followed by ex-
ponentiation. The logarithmic and exponential characteristic could be
implemented in appropriate ranges by the sigmoid-like pre-to-postsynaptic
voltage transduction of many synapses.

If the first or the second mechanism are used, the product of figure 5 can
be performed directly on the dendritic tree of the neuron representing the
corresponding radial function (alternatively, each dendritic tree may perform
pairwise products only, in which case a logarithmic number of cells would be
required). The GRBF scheme also requires a certain amount of memory per
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basis unit, in order to store the center vector. In the gaussian case the center
vector is effectively stored in the position of the 2D (or ID) receptive fields
and in their connections to the product unit(s). This is plausible physiologi-
cally. The update equations are probably not. Equation (28) or a somewhat
similar, quasi-hebbian scheme is not too unlikely and may require only a
small amount of plausible neural circuitry. Equation (29) seems more diffi-
cult to implement for a network of real neurons (as an aside, notice that in
the gaussian case the term h'(Ilxi t" 112) has an interesting form !). It should
be stressed, however, that the centers may be moved in other ways - or not
at all! In the gaussian case, with basis functions synthesized through the
product of gaussian receptive fields, moving the centers means establishing
or erasing connections to the product unit. This can be done on the basis
of rules that are different from the full equation 29, such as, for instance,
competitive learning, and that are biologically more plausible. Computer
experiments are needed to assess the efficacy of different strategies to learn
the optimal position of the centers.

The GRBF method with the Gaussian suggests an intriguing metaphor
for a computational strategy that the brain may use, in some cases. Com-
putation, in the sense of generalization from examples, would be done by
superposition of receptive fields in a multidimensional input space. In the
case of Gaussian radial basis functions, the multidimensional receptive fields
could be synthesized by combining lower dimensional receptive fields, possi-
bly in multiple stages. From this point of view, some cells would correspond
to radial functions with centers in a high dimensional input space, somewhat
similar to prototypes or coarse "grandmother cells", a picture that seems su-
perficially consistent with physiological evidence. They could be synthesized
as the conjunction of gaussian weighted positive and negative features in 2D
retinotopic arrays.

Notice that from this perspective the computation is performed by gaus-
sian receptive fields and their combination (through some approximation to
multiplication), rather than by threshold functions. The basis units may not
even need to be all radial, as we discuss in the next section. The view is in
the spirit of the key role that the concept of receptive field has always played
in neurophsyiology. It predicts the existence of low-dimensional feature-like
cells and multidimensional Gaussian-like receptive fields, somewhat similar
to template-like cells, a fact that could be tested experimentally on cortical
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cells. a

7.3 An example: recognizing a 3D object from its
perspective views

To illustrate the previous remarks let us consider the following specific task
in model-based visual recognition.

A set of visible points on a 3D object P 1, P2 , " , P,, maps under perspec-
tive projection onto corresponding points on the image plane, whose coordi-
nates will be indicated by (xi, yi), (X 2 , y2), ... (x,,y,). The set of these co-
ordinates represents a view. To each view j, obtained by a 3D rigid transfor-
mation of the object, we associate the vector vi = (XI, y, A , 4, A .. , 4, y)
in a 2n-dimensional space. Following Basri and Ullman (1989), who had con-
sidered the simpler case of orthographic projection plus scaling (they prove
the surprising result that any view can be obtained as the linear combination
of a small number of other appropriate views), we would like to synthesize
a system that takes any view of the specific object as input and provides a
standard view vo as output. The view of a different object would lead to
something different from vo. Is the task feasible? The following argument
shows that it is. So called structure-from-motion theorems prove that for a
moving rigid object as few as 2 perspective views and a small number of corre-
sponding points are sufficient for recovering the motion and the 3D structure
of the object (the available results, without a numerical stability analysis
and under rather weak conditions, are- 8 points (Longuet-Higgins, 1981)
,5 points (quoted by Longuet-Higgins, 1981), 7 points (Tsai and Huang,
1982) ) . . Thus a small number of perspective views of an object contains
the necessary information for computing any perspective view of the same
object (provided the points of interest are always visible).

We can use GRBF to achieve this goal, in the following way. We have
(see figure 5) 2n inputs to accommodate the vectors vi and, say K radial

3 We conjecture that Andersen's data, modeled by Zipser and Andersen (1988) with
a backpropagation network, may be better accounted for by a GRBF network. In the
latter scheme (see previous discussion) the radial functions are the product of 2D gaussians
representing the visual receptive fields and ID gaussians representing the eye position. This
accounts immediately for the multiplicative property of the V7 cells found by Andersen.
Their activities are then superimposed to obtain the desired mapping into head-centered
coordinates.
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basis functions initially centered each on one of a subset of the M views used
to "learn" the system (M > K). Instead of one output only as shown in
figure 5 the system will have 2n outputs corresponding to the components of
the standard view vo. Thus for each of the M inputs in the training set the
desired output is vo. In the simple case of "fixed centers" the network must
attempt to satisfy

o = GC

where Vo is the (M, 2N) matrix whose rows are all equal to the standard
view, C is the (K, 2N) matrix of the coefficients c and G is the (M, K) matrix
G(livi - t.112). The best solution in the least square sense is

C - G+V0.

Computer simulations show that the GRBF network generalizes success-
fully to views that are not part of the training set (Poggio and Edelman,
1989). We are presently exploring several issues, such as how performance
degrades with decreasing number of views and of radial basis functions.

In general it is better to have as few centers as possible and move them by
using equations 26 and 27. Notice that each center corresponds to a view or to
some "intermediate" view. Also notice that the required multidimensional
gaussians can be synthesized by the product of two-dimensional gaussian
receptive fields, looking in the retinotopic space of the features corresponding
to P1, P 2,' ", P,,. There would be a two-dimensional gaussian receptive field
for each view in the training set and for each feature Pi, centered at P (in
the simple case of fixed centers), for a total of N two-dimensional gaussian
receptive fields for each of the M centers. We have synthesized a yes/no
detector for a specific object, irrespectively of its 3D position, by subtracting
from the output of the GRBF network the selected standard view, then
taking the euclidean norm of the resulting error vector and thresholding it
appropriately. All of this assumes that the correspondence problem between
views is solved, a quite difficult proposition!

Finally, we cannot resist the temptation of mentioning that the GRBF
recognition scheme we have outlined has intriguing similarities with some of
the data about visual neurons responding to faces obtained by Perrett and
coworkers (see Perrett et al., 1987, Poggio and Edelman, 1989).
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7.4 Gaussian GRBFs, Coarse Coding and Product
Units

A popular approach in the neural network literature is coarse coding. This
technique assigns a receptive field to each computing unit. If the dimensions
of the receptive fields are properly chosen, a point in the input space gen-
erally belongs to a number of different receptive fields, and is then encoded
in a distributed way. An example of coarse coding is the "scalarized" rep-
resentation adopted by Saund (1987) to perform dimensionality reduction
by means of a network with one hidden layer. In his work a scalar value is
represented by the pattern of activity over a set of units. The pattern of
activity is determined by sampling a gaussian-like function G centered on
the scalar value itself. If t1 ,..., t, are the points at which the function G is
sampled the "scalarized" representation of the value x is then the following:

X :. {G(x - ti), G(x - t2), ..., G(x - t,,)} .

Once the input is represented in such a way, it is further processed by the
hidden and the output layer, for instance of a BP network. If the input
consists of more than one variable, each variable is "scalarized" separately.

Clearly, the previous sections show that a gaussian GRBF network (with
fixed centers) is equivalent to coarse coding followed by product units (also
called Sigma-Pi units, see Rumelhart et al. 1986; Mel, 1988). An example
is shown in figure 6 for a two dimensional input. The first layer represents
the coarse coding stage with two-dimensional gaussian receptive fields. The
second layer consist of product units that synthesize the gaussian radial basis
functions. The output of these units is then summed with the weights cl, c 2

and c3 to give the value of the GRBF expansion.
In this example the output of a product unit with inputs (Xi, x 2, ... , X)

was simply y = l' 1 xi. This is a particular case of the Product Units
introduced by Durbin and Rumelhart (1989). The output of a Product Unit
is in general y = I',= 4' where the pi are exponents that have to be chosen.
Substituting the units in the hidden layer with Products Units one obtains

(eXzti)2')"' (e_(Yti)2)P2 = e (Xi ) 2 +p' 2 (yi) 2 ] ,~(7

This gives an expansion on a set of non radial basis functions that can also be
derived from regularization (see section 8.2 and Girosi and Poggio, 1989a).
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Figure 6: A GRBF network with three knots, which can be used for the
reconstruction of a two dimensional function. The first layer consists of
Gaussian units, and implements one dimensional receptive fields. The second
layer consists of product units and is used to recover the two-dimensional
receptive field. The output is a weighted sum of the outputs of the product
units.
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8 Some Future Extensions and Applications

This section sketches some of the extensions and applications of GRBFs that
will be discussed in detail in a forthcoming paper (Girosi and Poggio, 1989a).

8.1 The Bayes Approach to GRBFs

Earlier in the paper we have shown that the regularization principle is strictly
related to the prior assumptions on the mapping to be learned and to the
noise distribution in the examples (section 3.3). Because of the "equivalence"
between GRBFs and regularization, it follows that the form of the radial
basis function - its shape and its parameters, such as scale - depends on the
prior, that is on the a priori knowledge of the smoothness properties of the
mapping to be learned. The prior is in turn related to the complexity of the
hypothesis. This point of view seems quite powerful both as an interpretation
of GRBFs and as an approach for generalizing the GRBF scheme in several
directions including, for instance, dimensionality regularization (Girosi and
Poggio, 1989). Another important generalization has to do with the type of a
priori knowledge that is assumed. The approach of this paper deals only with
assumptions about smoothness of the mapping to be learned. Assumptions
of this type are quite weak - in terms of required a priori knowledge - but
powerful - in terms of their implications (.6e Stone, 1982). It is natural to
ask whether it is possible to extend the approach of this paper to other types
of prior assumptions.

8.2 Generalizing GRBFs to HyperBFs

The GRBF network that we have derived consists of radial function all of
the same type. In the gaussian case all units have the same a which is set
by the stabilizer, that is by the prior assumptions about the function to be
learned. It is natural to attempt to write a more general expansion than
equation (19) in terms of, say, gaussians with a depending on t,, replacing
a by or,. Gradient descent could then be performed on o,, in addition to
ta and ca. Moody and Darken (1989) have reported successful testing of
a method somewhat similar to radial basis functions in which the a of the
gaussian units is determined from the data and is different from unit to
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unit. Somewhat surprisingly, it seems very difficult to derive rigorously from
regularization an expansion of this type. 4

We found, however, a different solution to the multiscale problem that is
consistent with regularization and, at the same time, generalizes the GRBF
scheme beyond radial functions. We call the resulting expansions and the
associated networks Hyper Basis Functions. In this section we sketch the
main results. Details will be given in Girosi and Poggio (1989a).

The main idea is to consider the mapping to be approximated as the
sum of several functions, each one with its own prior, that is stabilizer. The

corresponding regularization principle then yields a superposition of different
Green's functions, in particular gaussians with different a. Thus, instead of
doing gradient descent on a,, the network has a "repertoire" of different a at
the same positions and chooses which ones to use through the corresponding
coefficient. In more detail, the function f to be approximated is regarded
as the s!;m of p components fin, m = 1,... ,p, each component having a
different prior probability. Therefore the functional H[f] to minimize will
contain p stabilizers P m and will be written as

N p p

H[f] = -(Z f'(xi) - y,)' + E A.mIPinfinlj2  (38)
i=1 m=1 m

From the structure of equation (38) it is clear that the exact solution will
be a linear superposition of linear superpositions of the Green functions Gmn
corresponding to the stabilizers Pm. The approach of section 5.2 - of using
less radial functions than examples (with centers generally different from the
examples) - can be naturally extended to deal with this class of functionals

(Girosi and Poggio, 1989a). The approximated solution to the minimization
problem defined by equation (38) is written as (the HyperBF expansion)

p K

F(x) =cm, Gm (x; t'). (39)
m=1 Ot=1

In particular, this method leads to radial basis functions of multiple scales

"In principle, optimal a(z) could be found as the solution to a variational problem in
o, that contains the standard regularization problem: find the a, and then the stabilizer,
such that the solution of the regularization problem is optimal. The problem is related to
the optimization problems involving MRFs with line processes (Geiger and Girosi, 1989),
and to cross-validation techniques (Craven and Wahba, 1979; Wahba, 1977).
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for the reconstruction of the function f. Suppose we know a priori that
the function to be approximated has components on a number p of scales
S,... , o ,: we can use this information to choose a set of p stabilizers whose

Green functions are, for example, Gaussians of variance ap,..-, op. According
to example 1 of section (5.1.2) we have:

Ilpmf 2 = a n fR dx(Dmf (X)) 2  (40)
2k

where an = . As a result, the solution will be a superposition of superpo-
sitions of gaussians of different variance. Of course, the gaussians with large
a should be preset, depending on the nature of the problem, to be fewer and
therefore on a sparser grid, than the gaussians with a small o.

The method yields also non-radial Green's functions - by using appropri-
ate stabilizers - and also Green's functions with a lower dimensionality - by
using the associated f' and P'" in a suitable lower-dimensional subspace.
Again this reflects a priori information that may be available about the na-
ture of the mapping to be learned. In the latter case the information is that
the mapping is of lower dimensionality or has lower dimensional components
(see the problem of Saund, 1987).

Algorithms to perform gradient descent on the expansion equation (39)
are the same that can be used for GRBFs (see for instance equations (26)
and (27)). The additional "repulsive" term in the functional H[f] to be
minimized, introduced earlier, should now consist of the sum of pairwise in-
teractions among centers of the same type only, for instance among gaussians
with the same a. In equation 39 two identical basis functions with the same
center are clearly redundant, but two different basis functions in the same
position, for instance two gaussians with a different scale, may actually make
sense. This amounts to a form of an exclusion principle for basis units of the
same type (the index m in equation (40), see Girosi and Poggio, 1989).

Notice that an efficient heuristic scheme may want to create basis units in
regions of the input space where the network is not performing well and anni-
hilate basis units that are not activated much. This common sense heuristics
fits perfectly within the formal framework: creation of a new unit means
moving the center of an existing, remote one to an useful initial position;
annihilation is equivalent to a 0 value for the associated coefficient c.

One class of more efficient algorithms than simple gradient descent are
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multigrid techniques. Multiresolution techniques have been used in many
fields such as numerical analysis (Brandt, 1977) and computer vision (Rosen-
feld and Kak, 1982). The idea is to find a solution at a coarse scale, then use
this coarse solution as a starting point for higher resolution descriptions that
can then be used to refine the coarse levels in an iterative procedure that
proceeds from coarse to fine and back. Multigrid methods for solving partial
differential equations work in this general way. The same basic idea could be
used with multiple-scales HyperBF: a coarse description is first obtained by
doing gradient descent only on the few gaussian functions with large a. A
finer description is then derived by approximating the difference between the
data and the coarse approximation with more and smaller gaussian functions
(the finer description may be used only in a subregion of the input space,
somewhat similarly to a "fovea"). The whole process is then iterated again
in a sequence of error correction steps, from coarse to fine and from fine to
coarse. The process should be equivalent to doing gradient descent on the all
set of basis functions at once, but it could be computationally more efficient
and even more capable of avoiding local minima (depending on the problem).
Ideas of a similar flavor have been recently suggested by Moody (1989).

8.3 Nonlinear input and output coding

We have mentioned already that the HyperBF scheme when used for classi-
fication tasks could include an invertible nonlinear function a of the output
without affecting the basic technique. Clearly a similar nonlinear function o
could be applied to each of the inputs: the HyperBF approximation would
be then performed on the transformed ii njuts to yield the o - ' transformation
of the given output. It seems possible that in some cases suitable input and
output processing of this type may be advantageous. Is there a general rea-
son for it? Poggio (1982), following a forceful argument by Resnikoff (1975),
has argued that the input and the output of the mapping to be approximated
should be processed by a nonlinear function in order to match the domain
and the range of the approximating function. Resnikoff had proposed as
nonlinear functions for this processing the birational functions, the exponen-
tial function, the logarithmic function and the composition of this functions,
since they achieve the necessary conversion of domain and range with min-
imal disruption of the algebraic structure of the input and output spaces.
Input and output coding of this type tries to linearize the approximation
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as much as possible by exploiting a priori information about the range and
the domain of the mapping to be approximated. Interestingly, the sigmoid
function used at the output of many neural networks can be derived from
the composition of a rational function and an exponential and matches the
range of functions used for binary classification.

8.4 Learning Dynamical Systems

HyperBF can be used to "learn" a dynamical system from the time course of
its output. In fact, RBF have been suggested often as a good technique for
this problem and have been successfully tested in some cases (Broomhead
and Lowe, 1988; Casdagli, 1989). The technique involves the approximation
of the "iterated map" underlying the dynamical system (the crucial problem
is, of course, the estimation of the dimension of the attractor and the choice
of the input variables, see Farmer et al., (1983) for a good review). We have
every reason to believe that HyperBF will perform on this problem at least
as well as the linear techniques of Farmer and Sidorowich (1988) and the
backpropagation algorithm of Lapedes and Farber (1988).

8.5 Learning the Dynamical System Underlying a Com-
plex Mapping

Dynamical systems (in particular discrete time systems, that is difference
equations) are Turing universal (the game "Life" is an example that has
been demonstrated to be Turing universal). Thus a dynamical system such
as the feedback system shown in figure 7, where (XO, X1,. • •, Xn) are the signal
values at time to, ti,... , tn, is equivalent to a finite state machine. Clearly

the mapping f(xo; xi... x,) which is iterated by the feedback system can be
approximated by HyperBFs. This offers the possibility of "learning" a com-
putation more complex than a boolean function, if examples with sufficient
information are provided.

In the following, consider the simpler case of learning a mapping F be-
tween an input vector x and an output vector y = F(z) that belong to the
same n-dimensional space. The input and the output can be thought as the
asymptotic states of the discrete dynamical system obtained iterating some
map f. In several cases, the dynamical system that asymptotically performs
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the mapping may have a much simpler structure than the direct mapping F.
In other words, it is possible that the mapping f such that

lir f(')(x) = F(x) (41)
n-*oo

is much simpler than the mapping y = F(x) (here f(n)( r) means the n-th
iterate of the map f).

A concrete example is the cooperative stereo algorithm (Marr and Poggio,
1976) that maps a 3D set of possible matches into the 3D set of true matches.
The HyperBF technique can then be used to approximate f rather than F.
Each update is done after iterating equation (41) with a "large enough" n,
by using the obvious generalization of equation (28) and (29) (see Girosi and
Poggio, 1989a).

8.6 Multilayer networks

In a somewhat similar spirit to the previous section, multilayer radial ba-
sis function networks (with more than one hidden layer) may be used for
functions that happen to be well representable as the composition of func-
tions that have a simple radial basis functions expansion. There is no reason
to believe, however, that such "multilayer" functions represent a large and
interesting class.

Especially with backpropagation networks, researchers have often argued
for several layers of hidden units. From the point of view of HyperBF, one
layer is needed (the basis functions themselves), but there is no obvious sense
in additional layers. We believe that this is true in general for single networks.

On the other hand, there is a very good reason for parallel and hierarchi-
cal systems consisting, for instance, of several HyperBF modules connected
together: the first network, for instance, may synthesize features that are
used by one or more other modules for different, specific tasks.

8.7 Learning Perceptual and Motor tasks

HyperBFs have a good chance of being capable of synthesizing several vision
algorithms from examples, since (a) it is known that several problems in vi-
sion have satisfactory solutions in terms of regularization and (b) HyperBF
networks are essentially equivalent to regularization. We suggest that the use
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Figure 7: A HyperBF network used to approximate a mapping from
(XO, X1 , X2 ) to (YO, Y1, Y2) by approximating the dynamical system that maps
asymptotically the input into the output. The input is given and the feed-
back network is iterated a sufficient number of times. Then the HyperBF
update equations are used. The same procedure is used for new examples.
The goal is to approximate the dynamical system that gives asymptotically
the desired input-output relation.
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of HyperBFs is not restricted to sensory processes and that they may also be
used to learn motor tasks (Mel, 1988 has demonstrated a scheme for learn-
ing a simple motor task which can be considered a special case of GRBFs)
and even to model biological motor control. In support of this latter point,
notice that simple biological trajectory control seems to be well explained by
variational formulations of the regularization type (Flash and Hogan, 1985).
HyperBF networks are equivalent to regularization and may have attractive
neural interpretations: basis functions, possibly radial, may correspond to
motor units with a multidimensional motor field, whereas their sum may be
implicitly performed by the whole mechanical system, say a multijoint arm.
HyperBFs may also be used for simple forms of trajectory planning. Poten-
tial methods, which associate to obstacles appropriate repulsive forces and
obtain in this way an overall potential field that can be used in driving thc
trajectory, have been used with some success (for instance by Ahuja, 1989).
These methods are the motor analog of the potential methods used for pat-
tern recognition (see section 6.6). Clearly, HyperBFs seem naturally suited
to learn these fields from sets of examples. In any case, computer experi-
ments will have to be performed to assess the performance of the HyperBF
approach.

8.8 Learning Input Features

The theoretical framework we have developed in this paper does not say any-
thing about what is probably the most difficult problem in learning a map-
ping, that is the choice of the input representation. In the HyperBF scheme,
with gaussian basis functions, gradient descent on the centers positions and
on the coefficients c, can be regarded as equivalent to learning which features
to combine in prototypes by selecting the useful combinations. The problem
of the elementary features, however, is outside the regularization framework,
which is at the basis of HyperBF. Substantial extensions of our approach,
for instance using the Bayes point of view, or different approaches, such as
genetic-like algorithms, are clearly required.
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9 Conclusions

9.1 How HyperBFs really work

HyperBF have a rather simple structure that seems to capture some of the
main lessons that are becoming evident in the fields of statistics and neural
networks. HyperBF can be regarded as a process involving three coupled
stages:

* a stage which finds centers of clusters of training examples in the asso-
ciated n-dimensional space

* the coding of the inputs by the K basis functions

" a stage that performs an optimal linear mapping from the K-dimensional
space of basis functions into the desired output vector

The first stage can be regarded as similar to simple and efficient clustering
algorithms. The third stage is classical: optimal linear mappings by them-
selves work well in many situations. Our approach to HyperBF shows that
this sequence of stages is not just attractive heuristics but derives rigorously
from regularization and is thereby solidly grounded in approximation theory.
The theory says that the basis functions provide a sufficient nonlinear coding
of the input for linear approximation to work (see Poggio, 1982). In addition,
it says how to couple these various stages in a single procedure.

To have a feeling of how HyperBFs work let us consider a specific, extreme
case, in which we consider a HyperBFs network as a classifier, something the
formal theory does not actually allow. Imagine using a HyperBF scheme to
classify patterns, such as handwritten digits, in different classes. Assume
that the input is a binary a 8-bit vector of length N and each of the basis
functions is initially centered on the point in the N-dimensional input space
that corresponds to one of the training examples (fixed centers case). The
system has several outputs, each corresponding to one of the digit classes.
Let us consider a series of special cases of HyperBF of increasing generality:

1. Each of the unit (its center corresponds to an example) is an hyper-
sphere (see equation (34)) and is connected, with weight 1, to its output
class only. Classification is done by reading out the class with maximum
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output. In this case, the system is performing a Parzen window esti-
mate of the posterior probability and then using a MAP criterion. The
Parzen-window approach is similar (and asymptotically equivalent) to
the k,, nearest-neighbor estimation, of which the nearest-neighbor rule
is a special case. In this special case the network is equivalent to a
hypersphere classifier.

2. We now replace the hypersphere by a multidimensional gaussian that
is an allowed radial basis function (the hypersphere does not satisfy
Micchelli's condition and cannot be derived from regularization). At
least for the task of approximating smooth functions the network should
perform better than in the non-gaussian case. The centers of the radial
basis functions may be regarded as representing "templates" against
which the input vectors are matched (think, for instance of a radial
gaussian with small a, centered on its center, which is a point in the
n-dimensional space of inputs).

3. We may do even better by allowing arbitrary c values between the radial
units and the output. The c can then be found by the pseudoinverse
technique (or gradient descent) and are guaranteed to be optimal in
the 12 sense.

4. We now allow a number of (movable) centers with radial basis functions.
This is the GRBF scheme. Moving a center is equivalent to modifying
the corresponding template. Thus equation (29) attempts to develop
better templates by modifying during training the existing ones. In our
example, this means changing the pixel values in the arrays representing
the digits.

5. Finally the most general network contains radial units of the gaussian
type of different scale (i.e. a), together with non-radial units associated
to appropriate stabilizers and units that receive only a subset of the
inputs.

This list shows that the HyperBF scheme is an extension of some of the
simplest and most efficient approximation and learning algorithms which can
be regarded as special cases of it. In addition, it illuminates a few interesting
aspects of the HyperBF algorithm, such as its massive parallelism and its
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use of prototypes. The network is massively parallel in the sense that it may
in general require a large number of basis units. While this property could
have been regarded quite negatively a few years ago, this is not so anymore.
The advent of parallel machines such as the Connection Machine with about
65,000 processors and of special purpose parallel hardware has changed the
perspective towards massive parallelism. The use of prototypes by HyperBFs
suggest that, in a sense, HyperBFs networks are an extension of massive
template matchers or look-up tables. We believe that this property makes
them intriguingly attractive: after all, if memory is cheap, look-up tables are
a good starting point. The HyperBF scheme says how to extend look-up
tables to do as well as possible in terms of approximating a multidimensional
function about which very little is known.

9.2 Networks and Learning: The Pervasive Problem
of Dimensionality

Our main result shows that the class of feedforward multilayer networks
identical to HyperBF are equivalent to generalized splines, and are capable
of well approximating a smooth function. This is highly satisfactory from a
theoretical point of view, but in practice another fundamental question must
also be addressed: how many samples are needed to achieve a given degree
of accuracy (Stone, 1982; Barron and Barron, 1988)? It is well known that
the answer depends on the dimensionality d and on the degree of smoothness
p of the class of functions that has to be approximated (Lorentz, 1966, 1986;
Stone, 1982, 1985). This problem has been extensively studied and some
fundamental results have been obtained by Stone (1982). He considered a
class of nonparametric estimation problems, like surface approximation, and
computed the optimal rate of convergence ,, that is a measure of how ac-
curately a function can be approximated knowing n samples of its graph.
He showed that using a local polynomial regression the optimal rate of con-
vergence en = nl-2p' can be achieved, generalizing previous results based
on local averages. This means that the number of examples needed to ap-
proximate a function reasonably weli grows enormously with the dimension
d of the space on which it is defined, although this effect is mitigated by a
high degree of smoothness p (in fact e depends only on the ratio d). For
instance in the case of a twice differentiabie function of two variables, 8000
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examples are needed to obtain c,, = 0.05, but if the function depends on 10
variables the number of examples necessary to obtain the same rate of con-
vergence grows up to 10'. However, if a function of 10 variables is 10 times
differentiable 8000 examples will be enough to obtain c = 0.05.

Interestingly these results lead to an a posteriori justification of the
smoothness assumption that plays a central role in standard regularization.
In fact, when the number of dimensions becomes larger than 3 or 4, one
is forced to assume a high degree of smoothness: otherwise the nurmber of
examples required will be so large that the approximation task becomes hope-
less. This justifies the use of high-order stabilizers such as the gaussian (the
stabilizer is equivalent to the prior, see earlier) for high dimensional spaces,
whenever no other type of prior information about the function to be approx-
imated is available. Notice that in the case of an infinite degree of smoothness
the optimal rate of convergence tends to an asymptotic value. In fact it is
straightforward to check that limp-,,. c, = n-2. In this case it is possible to
obtain c,, = 0.05 with just 400 examples. It must be noticed however that
the set of functions with infinite degree of smoothness is a very small subset
of the space of the continuous functions.

The results stated above are optimal, but it is not guaranteed that they
are achievable with HyperBF. The similarity of HyperBF with splines is en-
couraging, however, since splines has been proved to be optimal in this sense
(Cox, 1984). Our results also suggest that most of the networks proposed in
the recent literature, since they are similar to the HyperBF nets, are likely
to have the same fundamental limitations, perhaps even more strongly, from
the point of view of sample complexity.
Other interesting results have been obtained by Baum and Haussler on the
statistical reliability of networks for binary classification (Baum, 1988; Baum
and Haussler, 1989). They use the concept of Vapnik-Chervonenkis dimen-
sion (Vapnik and Chervonenkis, 1971) in the network context to give the
probability of error on new data given the error on the training data. This
approach is different from the one pursued in approximation and regression
theory, since they do not estimate a priori the accuracy of the network. These
results do not directly apply to our case, but, since the concept of Vapnik-
Chervonenkis dimension has been shown to be very powerful, we think it will
also be relevant in the context of the HyperBF method.

Of course this analysis requires that the true dimension of the data set is
known, which is not always the case. Especially when the number of dimen-
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sions is large, not all of them are relevant: the problem of "dimensionality
reduction" is how to find the relevant dimensions. A solution to the problem
consists in considering the dimension as another random variable that has to
be estimated from data (see Girosi and Poggio, 1989). A priori knowledge
about the number of dimensions can be embedded in the MAP estimator, to
make, for instance, low dimensionality solutions more likely than others.
Another approach to dimensionality reduction has been pursued by J. Schwartz
(1988), and has been shown to be not very different from ours (Girosi and
Poggio, 1989). He solves the learniag problem for many data sets, obtained
from the original one dropping some dimensions, and then selects the one
that gives the best result. This method is more similar to Generalized Cross
Validation (Wahba, 1977; Craven and Wahba, 1979) and even without a
priori information on the dimensionality of the problem, turned out to be
effective in computer simulations (Schwartz, 1988).

9.3 Summary

Approaching the problem of learning in networks from the point of view
of approximation theory provides several useful insights. It illuminates what
network architectures are doing; it suggests more principled ways of obtaining
the same results and ways of extending further the approach; and finally, it
suggests fundamental limitations of all approximation methods, including so
called neural networks.

In this paper, we developed a theoretical framework based on regulariza-
tion techniques that led to a class of three-layer networks, useful for approxi-
mation, that we call Generalized Radial Basis Functions (GRBF), since they
are closely related to the well-known Radial Basis Functions, mainly used for
strict interpolation tasks. We have introduced several new extensions of the
method and its connections with splines, regularization, Bayes formulation
and clustering. GRBFs have a direct interpretation in terms of a feedforward,
multilayer network architecture. Unlike neural networks they have good the-
oretical foundations. They may provide the best framework within which we
can study general issues for learning techniques of the neural network type.
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A Kolmogorov's and Vitushkin's Theorems

In this section we discuss the problem of the exact representation of continu-
ous multivariate functions by superposition of univariate ones. Some results
on this topic will be reported as well their interpretation in the framework
of the multilayer networks.

This problem is the thirteenth of the 23 problems that Hilbert formulated
in his famous lecture at the International Conference of Mathematicians in
Paris, 1900. Although his original formulation dealt with properties of the
solution of a seventh degree algebric equation this problem can be restated
as follows:

prove that there are continuous functions of three variables, not repre-
sentable as superpositions of continuous functions of two variables
The definition of superposition of functions can be found in Vitushkin (1954),
but is quite cumbersome and to our aims is sufficient to define it as the
usual composition. For example the function xy is the superposition of the
functions g(-) = exp(.) and h(.) = log(.), since we can write

xy = e(19x+O9Y) = g(h(x) + h(y)).

In 1957 Kolmogorov and Arnol'd showed the conjecture of Hilbert to be false:
by Kolmogorov's theorem any continuous function of several variables can
represented by means of a superposition of continuous functions of a single
variable and the operation of addition. The original statement of Kolmogorov
(1957) is the following:

Theorem A.1 There exist fixed increasing continuous functions hpq(x), on
I = [0, 11 so that each continuous function f on I n can be written in the form

2n+1 n

f (xI...,IX,)= E gq(y hq(xp)),
q=1 p=-

where gq are properly chosen continuous functions of one variable.

Since the original formulation of Kolmogorov many authors have im-
proved the representation of theorem A.1. The main results are concerned
with the possibility of replacing the functions gq by a single function g
(Lorentz, 1962) and of writing hpq as lphq (Sprecher, 1964). Here we re-
port a formulation due to Kahane (1975) whose proof does not need the
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construction of the functions hq, relying instead on the Baire's theorem. We
first give some definitions. We will say that a statement is true for quasi
every element of a complete metric space M if it is true on the intersection
of a countable family of open sets which are everywhere dense in M. Let H
be the space with uniform norm consisting of all functions continuous and
non decreasing on the segment I and Hk = H x ... x H the k-th power of
the space H.The following theorem then holds:

Theorem A.2 Let lp(p = 1,..., n) be a collection of rationally independent

constants. Then for quasi every collection {hl,..., h2,+l} E H 2 n+ 1 it is true
that any function f E C(In) can be represented on I'n in the form

2n+1 n

f(xi,...,x.) = E g(- lph(xp)),
q=1 p=l

where g is a continuous function.

The representation of this formula has been graphically depicted in figure 8:
it is evident the connection between this superposition scheme and a mul-
tilayer network architecture. In this framework this result could seem very
appealing : the representation of a function requires a fixed number of nodes,
smoothly increasing with the dimension of the input space. Unfortunately
further studies on this subject showed that these results are somewhat patho-
logical and their practical implications very limited. The problem lies in the
inner functions of Kolmogorov's formula: although they are continuous, some
results of Henkin and Vitushkin (1967) prove that they must be highly non-
smooth. Since the numb, r of binary digits required to code a function with
a given accuracy is inversally proportional to its degree of smoothness, as
a result a very poor accuracy will be obtained implementing Kolmogorov's
formula with finite precision. One could ask if it is possible to find a super-
position scheme in which the functions involved are smooth. The answer is
negative, even for two variable functions, and was given by Vitushkin with
the following theorem (1954):

Theorem A.3 There are r (r = 1,2, ...) times continuously differentiable
functions of n > 2 variables, not representable by superposition of r times
continuously differentiable functions of less than n variables; there are r times
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Figure 8: The network implementation of Kahane 's version of Kolmogorov s
theorem
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continuously differentiable functions of twe variables which are not repre-
sentable by sums and continuously differentiable functions of one variable.

We notice that the intuition underlying Hilbert's conjecture and theorem
A.3 is the same: not all the functions with a given degree of complexity can
be represented in simple way by means of functions with a lower degree of
complexity. The reason for the failing of Hilbert's conjecture is a "wrong"
definition of complexity: Kolmogorov's theorem shows that the number of
variables is not sufficient to characterize the complexity of a function. Vi-
tushkin showed that such a characterization is possible and gave an explicit
formula. Let f be a r times continuously differentiable function defined on
I n with all its partial derivatives of order r belonging to the class Lip[O, 11a.
Vitushkin puts

r-+-a
X--

n
and shows that it can be used to measure the inverse of the complexity of a
class of functions. In fact he succeded in proving the following:

Theorem A.4 Not all functions of a given characteristic Xo = 2 > 0 can be
represented by superpositions of functions of characteristic X = > Xo, q> 1.

Theorem A.3 is easily derived from this result.

B Linear Approximation (1-Layer Networks)

Let us assume that the mapping between a set of input vectors y and a
set of output vectors z is linear (for an example, see Hurlbert and Poggio,
1988). How can we estimate the linear mapping from a set of examples?
We start by arranging the sets of vectors in two matrices Y and Z. The
problem of synthesizing the linear operator L is then equivalent to "solving"
the following equation for L:

Z=LY (42)

A general solution to this problem is given by
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L-- ZY + ,  (43)

where Y+ is the pseudoinverse of Y. This is the solution which is most robust
against errors, if equation (42) admits several solutions and it is the optimal
solution in the least-squares sense, if no exact solution of equation (42) exists.
This latter case is the one of interest to us: in order to overconstrain the
problem, and so avoid look-up table solutions, we require that the number
of examples (columns of Y) be larger than the rank of the matrix L. In this
case, there is no exact solution of equation (42) and the matrix L is chosen
instead to minimize the expression

M = lILY - ZII2. (44)

L may be computed directly by minimizing (44), which yields

L = ZYT(yyT) -1 (45)

In practice, we compute L using equation (45), but first regularize it
by adding a stabilizing functional to obviate problems of numerical stability
(Tikhonov and Arsenin, 1977).

B.1 Recursive Estimation of L

It is of particular importance for practical applications that the pseudoinverse
can be computed in an adaptive way by updating it when new data become
available (Albert, 1972). Consider again equation (45). Assume that the
matrix Y consists of n - 1 input vectors and Z of the corresponding correct
outputs. We rewrite equation (45) as

Ln_1 = Zn-_Y+_, (46)

If another input-output pair Yn and z, becomes available, we can compute
Ln recursively L:,

Ln= Ln._ + (zn - Ln_1yn)tn, (47)

where
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T T I-

tT = Y," Y,,- tY- (48)
n T

1 + Yn (Y 1iyT)..1Yn48

provided that (Y,,_.YT1 !)-1 exists (i.e., that the number of columns in Y is
greater than or equal to the dimension of y). The case in which (Yn_Y.1YT 1 )-1

does not exist is discussed together with more general results in Albert (1972).
Note that (z, - L,,_.ly,) in the updating equation (47) is the error between
the desired output and the predicted one, in terms of the current L. The
coefficient t, is the weight of the correction: with the value given by equation
(48) the correction is optimal and cannot be improved by any iteration with-
out new data. A different value of the coefficient is suboptimal but may be
used to converge to the optimal solution by successive iterations of equation
(48) using the same data.

B.2 Optimal Linear Estimation, Regression and Bayesian
Estimation

The optimal linear estimation scheme we have described is closely related to
a special case of Bayesian estimation in which the best linear unbiased esti-
mator (BLUE) is found. Consider equation (42): the problem is to construct
an operator L that provides the best estimation Ly of z. We assume that
the vectors y and z are sample sequences of gaussian stochastic processes
with, for simplicity, zero mean. Under these conditions the processes are
full-, specified by their correlation functions

E[yyT ] = Cry, E[zyT] = Cy (49)

where E indicates the expected value. The BLUE of z (see Albert, 1972) is,
given y,

= C C -1  (50)

which is to be compared with the regression equation

Ly = zyT(yyT)-ty. (51)
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The quantities ZYT and yyT are approximations to Cz, and C.., respec-
tively, since the quantities are estimated over a finite number of observations
(the training examples). Thus there is a direct relation between BLUEs and
optimal linear estimation. The learned operator captures the stochastic reg-
ularities of the input and output signals. Note that if the input vectors y
are orthonormal, then L = ZYT and the problem reduces to constructing a
simple correlation memory of the holographic type (see Poggio, 1975). Under
no restrictions on the vectors y, the correlation matrix ZYT may still be con-
sidered as a low-order approximation to the optimal operator (see Kohonen,
1978).

C Polynomial Approximation

A natural extension of linear estimation is polynomial estimation. The
Weierstrass-Stone theorem suggests that polynomial mappings, of which lin-
ear mappings are a special case, can approximate arbitrarily well all con-
tinuous real functions. There are function space equivalents of Weierstrass'
theorem. In our case, defining X - X • :X (n times) as the set of linear
combinations of the monomials of degree n in the components (X 1,.. ., Xk)
of X, we simply look for the multivariate polynomial given by L(X) =

Lo+LX+L2X.X+L 3X.X.X+... that minimizes Ujy-L(X)II. The prob-
lem is equivalent to finding the optimal linear estimator on the "expanded"
space consisting of all the products of the components of X. The mono-
mials such as X 1 ,X 1X 2, or Xj 2X3X 3 ... become the new features that are
input to an optimal linear estimator. The resulting polynomial estimator can
approximate any continuous mapping. In the case of optimal polynomial es-
timation, the crucial problem is computational complexity, which translates
into the computation of the pseudoinverse of very large matrices y, (see equa-
tion (43)). As a (small) step toward simplifying this problem, one can think
of computing the optimal L0 , then the optimal L1 connection, and so on in
a sequence, up to L,,. Poggio (1975) proposes that the optimal polynomial
estimator of order n can be found by an iterative procedure that first find the
optimal linear estimator, then the optimal secrand-order correction up to the
optimal n-order correction and then back again to the linear correction and
so on. A theorem (Poggio, 1975) guarantees convergence of the procedure to
the optimal n-th order estimator.
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Recently, it has been demonstrated that a multilayer network can repre-
sent exactly any polynomial mapping, given polynomial output functions of
at least order two for each unit and enough hidden units and layers (Moore
and Poggio, 1988).

D The Relation between Regularization and
Bayes Estimation

The problem of hypersurface reconstruction - and therefore of learning - can
be formulated as a Bayesian estimation problem. The goal is to estimate the
a posteriori probability P/d of the solution z given the data d and use the
estimate according to a chosen performance criterion. Bayes theorem yields

P(z/d) cx P(z)P(d/z)

where P(z) is the prior probability density of the process associated with
z and P(d/z) is the conditional probability density of the data d given the
hypersurface z.

We consider now the special case of z (or equivalently the result of the
action of any differential operator P on it) being a gaussian process. In this
case, the a priori probability distribution of z is

P(z) Mx e- (Z'PPZ)

where (.,.) is a scalar product in the space to whom z belongs and P is the
adjoint of the operator P. Let us assume that the noise process affecting the
data d taken from z is additive, white and gaussian with variance a2. Then
the conditional probability P(d/z) can be written as

P(d/z) o =21111"-.

where II-. is the norm induced by the scalar product (.,.). Depending on
the optimality criterion there are now several ways of obtaining the best
estimate of z given the data d. A commonly used estimate is the Maximum
A Posteriori (MAP) estimate
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P(Zbest/d) = max{P(z/d)lz E Z}

In our case the following holds

P(Zbest/d) = max e--2II; 2 - PP .

Since by definition (z, PPz) = IPz112, this is equivalent to finding the solu-
tion z that minimizes the functional

1Iz - dl 2 + AllPzt 2

that, in the case of sparse data, becomes the functional of equation (1).
This sketch of the relation between the Bayesian approach and regular-

ization shows that the first term in equation 1, F, Ilzi - djll2, is -logPd/, in
other words it represents the known model of the measurement process or,
equivalently, the model of the noise. The second term, iiPz112, is -logP. and
therefore is dictated by the prior, that is the a priori knowledge about the
solution, such as its smoothness properties.
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